

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3096317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 387-392.	15.6	972
2	Heteronanowires of MoC–Mo ₂ C as efficient electrocatalysts for hydrogen evolution reaction. Chemical Science, 2016, 7, 3399-3405.	3.7	532
3	Structural Design and Electronic Modulation of Transitionâ€Metalâ€Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Advanced Materials, 2019, 31, e1802880.	11.1	422
4	Cobaltâ€Doping in Molybdenum arbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2016, 26, 5590-5598.	7.8	400
5	Phosphorus-Mo ₂ C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy and Environmental Science, 2017, 10, 1262-1271.	15.6	379
6	Hierarchically structured zeolites: synthesis, mass transport properties and applications. Journal of Materials Chemistry, 2012, 22, 17381.	6.7	372
7	Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44, 8877-8903.	18.7	279
8	Flexible Nitrogenâ€Doped 2D Titanium Carbides (MXene) Films Constructed by an Ex Situ Solvothermal Method with Extraordinary Volumetric Capacitance. Advanced Energy Materials, 2018, 8, 1802087.	10.2	205
9	CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 242, 132-139.	10.8	198
10	Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 6006-6013.	5.2	195
11	Dehydration of Glycerol to Acrolein over Hierarchical ZSM-5 Zeolites: Effects of Mesoporosity and Acidity. ACS Catalysis, 2015, 5, 2548-2558.	5.5	156
12	Hollow Zeolite Capsules:Â A Novel Approach for Fabrication and Guest Encapsulation. Chemistry of Materials, 2002, 14, 3217-3219.	3.2	149
13	Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires. Journal of Materials Chemistry, 2010, 20, 2807.	6.7	141
14	Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: Effects of accessibility and strength of acid sites. Journal of Catalysis, 2013, 302, 115-125.	3.1	140
15	Synthesis of Nanoporous Molybdenum Carbide Nanowires Based on Organicâ~'Inorganic Hybrid Nanocomposites with Sub-Nanometer Periodic Structures. Chemistry of Materials, 2009, 21, 5560-5562.	3.2	130
16	MXene Nanoarchitectonics: Defectâ€Engineered 2D MXenes towards Enhanced Electrochemical Water Splitting. Advanced Energy Materials, 2022, 12, .	10.2	125
17	Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catalysis Science and Technology, 2014, 4, 2891-2895.	2.1	115
18	Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process. Journal of Materials Chemistry, 2002, 12, 1812-1818.	6.7	109

#	Article	IF	CITATIONS
19	Microwave-Assisted Reactant-Protecting Strategy toward Efficient MoS ₂ Electrocatalysts in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 23741-23749.	4.0	107
20	Achieving of Flexible, Free‣tanding, Ultracompact Delaminated Titanium Carbide Films for High Volumetric Performance and Heatâ€Resistant Symmetric Supercapacitors. Advanced Functional Materials, 2018, 28, 1705487.	7.8	105
21	Electrospinning Heteroâ€Nanofibers of Fe ₃ Câ€Mo ₂ C/Nitrogenâ€Dopedâ€Carbon as Efficient Electrocatalysts for Hydrogen Evolution. ChemSusChem, 2017, 10, 2597-2604.	3.6	100
22	One-dimensional growth of MoOx-based organic–inorganic hybrid nanowires with tunable photochromic properties. Journal of Materials Chemistry, 2012, 22, 4709.	6.7	98
23	Unusual Pathway of Crystallization of Zeolite ZSM-5 in a Heterogeneous System: Phenomenology and Starting Considerations. Chemistry of Materials, 2012, 24, 1726-1737.	3.2	97
24	Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chemical Science, 2011, 2, 2006.	3.7	94
25	Future of nano-/hierarchical zeolites in catalysis: gaseous phase or liquid phase system. Catalysis Science and Technology, 2015, 5, 772-785.	2.1	87
26	Synthesis of Chemically Asymmetric Silica Nanobottles and Their Application for Cargo Loading and as Nanoreactors and Nanomotors. Angewandte Chemie - International Edition, 2016, 55, 14733-14737.	7.2	80
27	High-Concentration Preparation of Silver Nanowires: Restraining <i>in Situ</i> Nitric Acidic Etching by Steel-Assisted Polyol Method. Chemistry of Materials, 2008, 20, 1699-1704.	3.2	77
28	Floating conductive catalytic nano-rafts at soft interfaces for hydrogen evolution. Chemical Science, 2013, 4, 3432.	3.7	75
29	Chemical Liquid Deposition Zeolites with Controlled Pore-Opening Size and Shape-Selective Separation of Isomers. Industrial & amp; Engineering Chemistry Research, 1996, 35, 430-433.	1.8	66
30	One-Step Synthesis of Dimethyl Ether from Syngas with Fe-Modified Zeolite ZSM-5 as Dehydration Catalyst. Catalysis Letters, 2004, 98, 235-240.	1.4	66
31	Zeolite microspheres with hierarchical structures: formation, mechanism and catalytic performance. Journal of Materials Chemistry, 2011, 21, 16223.	6.7	62
32	Polylysine-modified MXene nanosheets with highly loaded glucose oxidase as cascade nanoreactor for glucose decomposition and electrochemical sensing. Journal of Colloid and Interface Science, 2021, 586, 20-29.	5.0	61
33	Metal non-oxide nanostructures developed from organic–inorganic hybrids and their catalytic application. Nanoscale, 2014, 6, 14106-14120.	2.8	52
34	Fast synthesis of nanosized zeolite beta from a low-seeded, low-templated dry gel with a seeding-steam-assisted conversion method. Journal of Materials Chemistry A, 2014, 2, 1247-1251.	5.2	51
35	LAYER-BY-LAYER ASSEMBLY OF NANOZEOLITE BASED ON POLYMERIC MICROSPHERE: ZEOLITE COATED SPHERE AND HOLLOW ZEOLITE SPHERE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 509-526.	1.2	50
36	The effect of <i>in situ</i> nitrogen doping on the oxygen evolution reaction of MXenes. Nanoscale Advances, 2020, 2, 1187-1194.	2.2	50

#	Article	IF	CITATIONS
37	Controllable Synthesis of Organic–Inorganic Hybrid MoO _{<i>x</i>} /Polyaniline Nanowires and Nanotubes. Chemistry - A European Journal, 2011, 17, 1465-1472.	1.7	49
38	Mesoporous microcapsules with noble metal or noble metal oxide shells and their application in electrocatalysis. Journal of Materials Chemistry, 2004, 14, 3548.	6.7	46
39	A novel two-dimensional accordion-like titanium carbide (MXene) for adsorption of Cr(VI) from aqueous solution. Journal of Advanced Dielectrics, 2018, 08, 1850035.	1.5	46
40	Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization. Chinese Journal of Catalysis, 2013, 34, 1429-1433.	6.9	45
41	Chemoselective hydrogenation of α,β-unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles. Journal of Molecular Catalysis A, 2016, 425, 248-254.	4.8	45
42	Tailoring the Morphology of MTW Zeolite Mesocrystals: Intertwined Classical/Nonclassical Crystallization. Chemistry of Materials, 2017, 29, 3387-3396.	3.2	44
43	Direct Transformation of HMF into 2,5â€Diformylfuran and 2,5â€Dihydroxymethylfuran without an External Oxidant or Reductant. ChemSusChem, 2017, 10, 494-498.	3.6	42
44	Synergistically Coupling Phosphorus-Doped Molybdenum Carbide with MXene as a Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 12990-12998.	3.2	42
45	Ultrathin dodecyl-sulfate-intercalated Mg-Al layered double hydroxide nanosheets with high adsorption capability for dye pollution. Journal of Colloid and Interface Science, 2020, 577, 181-190.	5.0	42
46	Enhancing Metal–Support Interactions by Molybdenum Carbide: An Efficient Strategy toward the Chemoselective Hydrogenation of α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2016, 22, 5698-5704.	1.7	40
47	Methanol and Diethanolamine Assisted Synthesis of Flexible Nitrogen-Doped Ti ₃ C ₂ (MXene) Film for Ultrahigh Volumetric Performance Supercapacitor Electrodes. ACS Applied Energy Materials, 2020, 3, 586-596.	2.5	40
48	Magnetically Separable Nanozeolites:Â Promising Candidates for Bio-Applications. Chemistry of Materials, 2006, 18, 3169-3172.	3.2	39
49	Interlayer engineering of molybdenum disulfide toward efficient electrocatalytic hydrogenation. Science Bulletin, 2021, 66, 1003-1012.	4.3	39
50	Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermal conversion behavior. Journal of Materials Chemistry A, 2013, 1, 10120.	5.2	38
51	Organic Structure Directing Agentâ€Free and Seedâ€Induced Synthesis of Enriched Intracrystal Mesoporous ZSMâ€5 Zeolite for Shapeâ€Selective Reaction. ChemCatChem, 2013, 5, 2874-2878.	1.8	37
52	Phosphorus-doped molybdenum carbide/MXene hybrid architectures for upgraded hydrogen evolution reaction performance over a wide pH range. Chemical Engineering Journal, 2021, 423, 130183.	6.6	37
53	A Partially Graphitic Mesoporous Carbon Membrane with Three-Dimensionally Networked Nanotunnels for Ultrasensitive Electrochemical Detection. Chemistry of Materials, 2017, 29, 5286-5293.	3.2	34
54	Alkali-metal-ions promoted Zr-Al-Beta zeolite with high selectivity and resistance to coking in the conversion of furfural toward furfural alcohol. Journal of Catalysis, 2020, 389, 623-630.	3.1	34

#	Article	IF	CITATIONS
55	Experimental exploration and research prospect of physical bases and functional characteristics of meridians. Science Bulletin, 1998, 43, 1233-1252.	1.7	31
56	Mo ₂ C/Reducedâ€Grapheneâ€Oxide Nanocomposite: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ChemElectroChem, 2016, 3, 2110-2115.	1.7	31
57	Controlled release and conversion of guest species in zeolite microcapsules. New Journal of Chemistry, 2005, 29, 272.	1.4	30
58	Continuous hydrogenation of ethyl levulinate to Î ³ -valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization. Scientific Reports, 2016, 6, 28898.	1.6	30
59	Observing a Zeolite Nucleus (Subcrystal) with a Uniform Framework Structure and Its Oriented Attachment without Singleâ€Molecule Addition. Angewandte Chemie - International Edition, 2021, 60, 13444-13451.	7.2	30
60	Microwave-assisted highly efficient transformation of ketose/aldose to 5-hydroxymethylfurfural (5-HMF) in a simple phosphate buffer system. RSC Advances, 2012, 2, 7652.	1.7	28
61	Seeding Bundlelike MFI Zeolite Mesocrystals: A Dynamic, Nonclassical Crystallization via Epitaxially Anisotropic Growth. Chemistry of Materials, 2017, 29, 9247-9255.	3.2	28
62	In-situ reconstruction of catalysts in cathodic electrocatalysis: New insights into active-site structures and working mechanisms. Journal of Energy Chemistry, 2022, 70, 414-436.	7.1	28
63	Enhanced accessibility and utilization efficiency of acid sites in hierarchical MFI zeolite catalyst for effective diffusivity improvement. RSC Advances, 2014, 4, 43752-43755.	1.7	27
64	Tailoring Zeolite ZSMâ€5 Crystal Morphology/Porosity through Flexible Utilization of Silicaliteâ€1 Seeds as Templates: Unusual Crystallization Pathways in a Heterogeneous System. Chemistry - A European Journal, 2016, 22, 7141-7151.	1.7	27
65	A Zr-Al-Beta zeolite with open Zr(<scp>iv</scp>) sites: an efficient bifunctional Lewis–BrÃ,nsted acid catalyst for a cascade reaction. Catalysis Science and Technology, 2019, 9, 4055-4065.	2.1	27
66	Oxidant-Free Transformation of Ethylene Glycol toward Glycolic Acid in Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 17559-17564.	3.2	26
67	Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion. RSC Advances, 2016, 6, 47623-47631.	1.7	25
68	Direct production of levulinic acid in high yield from cellulose: joint effect of high ion strength and microwave field. RSC Advances, 2016, 6, 39131-39136.	1.7	24
69	Mesoporous and Skeletal Molybdenum Carbide for Hydrogen Evolution Reaction: Diatomiteâ€₹ype Structure and Formation Mechanism. ChemElectroChem, 2017, 4, 2169-2177.	1.7	24
70	Bimetallic Platinumâ€Tin Nanoparticles on Hydrogenated Molybdenum Oxide for the Selective Hydrogenation of Functionalized Nitroarenes. ChemCatChem, 2017, 9, 4199-4205.	1.8	24
71	Silica nanowire assemblies as three-dimensional, optically transparent platforms for constructing highly active SERS substrates. Nanoscale, 2017, 9, 15901-15910.	2.8	23
72	Organicâ^'Inorganicâ€Hybridâ€Derived Molybdenum Carbide Nanoladders: Impacts of Surface Oxidation for Hydrogen Evolution Reaction. ChemNanoMat, 2018, 4, 194-202.	1.5	23

#	Article	IF	CITATIONS
73	Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assembly. Journal of Colloid and Interface Science, 2018, 531, 555-563.	5.0	22
74	CoxNi1â^'x nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction. Journal of Catalysis, 2019, 372, 277-286.	3.1	21
75	A Scalable Upgrading of Concentrated Furfural in Ethanol: Combining Meerwein–Ponndorf–Verley Reduction with <i>in Situ</i> Cross Aldol Condensation. ACS Sustainable Chemistry and Engineering, 2018, 6, 4316-4320.	3.2	19
76	MoC nanodots toward efficient electrocatalytic hydrogen evolution: an interlayer-confined strategy with a 2D-zeolite precursor. Journal of Materials Chemistry A, 2021, 9, 4724-4733.	5.2	19
77	Rapid detemplation of nanozeolite β: microwave-assisted Fenton-like oxidation. RSC Advances, 2012, 2, 6036.	1.7	18
78	Engineering Fractal MTW Zeolite Mesocrystal: Particle-Based Dendritic Growth via Twinning-Plane Induced Crystallization. Crystal Growth and Design, 2018, 18, 1101-1108.	1.4	18
79	Template-Free Synthesis of Chemically Asymmetric Silica Nanotubes for Selective Cargo Loading and Sustained Drug Release. Chemistry of Materials, 2019, 31, 4291-4298.	3.2	18
80	Colloidal magnesium hydroxide Nanoflake: One-Step Surfactant-Assisted preparation and Paper-Based relics protection with Long-Term Anti-Acidification and Flame-Retardancy. Journal of Colloid and Interface Science, 2022, 607, 992-1004.	5.0	18
81	Fabrication of zeolite coatings on stainless steel grids. Journal of Materials Science Letters, 2001, 20, 2091-2094.	0.5	17
82	Synthesis of Chemically Asymmetric Silica Nanobottles and Their Application for Cargo Loading and as Nanoreactors and Nanomotors. Angewandte Chemie, 2016, 128, 14953-14957.	1.6	17
83	Molybdenum-Incorporated Mesoporous Silica: Surface Engineering toward Enhanced Metal–Support Interactions and Efficient Hydrogenation. ACS Applied Materials & Interfaces, 2018, 10, 42475-42483.	4.0	17
84	Facile Fabrication and Morphology Regulation of Crossed MFI Zeolite with Improved Performance on LDPE Cracking. Industrial & Engineering Chemistry Research, 2019, 58, 13174-13181.	1.8	17
85	Nickel-doped Co4N nanowire bundles as efficient electrocatalysts for oxygen evolution reaction. Science China Materials, 2021, 64, 1889-1899.	3.5	16
86	Alkylation of hydroquinone with tert-butanol over AlSBA-15 mesoporous molecular sieves. Catalysis Letters, 2005, 100, 95-100.	1.4	15
87	Enhanced hydrogenation of ethyl-levulinate to γ-valerolactone over Ni ^δ O _x stabilized Cu ⁺ surface sites. RSC Advances, 2016, 6, 87294-87298.	1.7	15
88	Efficient hydrogenation of dimethyl oxalate to ethylene glycol via nickel stabilized copper catalysts. RSC Advances, 2016, 6, 111415-111420.	1.7	15
89	Fractal MTW Zeolite Crystals: Hidden Dimensions in Nanoporous Materials. Angewandte Chemie - International Edition, 2017, 56, 11764-11768.	7.2	15
90	Nobleâ€Metalâ€Free Electrocatalysts: Structural Design and Electronic Modulation of Transitionâ€Metalâ€Carbide Electrocatalysts toward Efficient Hydrogen Evolution (Adv. Mater. 2/2019). Advanced Materials, 2019, 31, 1970009.	11.1	15

#	Article	IF	CITATIONS
91	Studies on the Colloidization and Stability of Layered M(IV) Phosphates in Aqueous Amine Solutions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1997, 27, 303-317.	1.6	14
92	Ordered, Highly Zeolitized Mesoporous Aluminosilicates Produced by a Gradient Acidic Assembly Growth Strategy in a Mixed Template System. Chemistry of Materials, 2016, 28, 4859-4866.	3.2	14
93	Borate-Stabilized Transformation of C6 Aldose to C4 Aldose. ACS Catalysis, 2017, 7, 4473-4478.	5.5	14
94	Core–Shell Zeolite Y@γâ€Al ₂ O ₃ Nanorod Composites: Optimized Fluid Catalytic Cracking Catalyst Assembly for Processing Heavy Oil. ChemCatChem, 2017, 9, 2574-2583.	1.8	14
95	Chinese ink-promoted co-assembly synthesis of 3D hierarchically structured and porous MoCx/C nanocomposites for highly efficient hydrogen evolution reaction. Carbon, 2020, 170, 558-566.	5.4	14
96	Silanizationâ€Based Zeolite Crystallization: Participation Degree and Pathway. Chemistry - A European Journal, 2015, 21, 12161-12170.	1.7	13
97	Microexplosion under Microwave Irradiation: A Facile Approach to Create Mesopores in Zeolites. Chemistry of Materials, 2016, 28, 2757-2767.	3.2	13
98	Efficient and cost-effective method to synthesize highly purified Ti ₄ AlN ₃ and Ti ₂ AlN. Journal of Advanced Dielectrics, 2019, 09, 1950008.	1.5	13
99	Self-supporting composited electrocatalysts of ultrafine Mo ₂ C on 3D-hierarchical porous carbon monoliths for efficient hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 23265-23273.	5.2	13
100	Controlled nitridation of tantalum (oxy)nitride nanoparticles towards optimized metal-support interactions with gold nanocatalysts. RSC Advances, 2015, 5, 89282-89289.	1.7	12
101	Efficient Production of Biomassâ€Derived C ₄ Chiral Synthons in Aqueous Solution. ChemCatChem, 2017, 9, 4179-4184.	1.8	12
102	Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties. Frontiers of Chemical Science and Engineering, 2020, 14, 143-158.	2.3	12
103	Catalytic hydrolysis of chlorofluorocarbon (CFC-12) over WO3/ZrO2. Catalysis Letters, 2000, 65, 85-89.	1.4	11
104	FTIR Spectroscopy in Cultural Heritage Studies: Non-destructive Analysis of Chinese Handmade Papers. Chemical Research in Chinese Universities, 2019, 35, 586-591.	1.3	9
105	Constructing Mosaic-Tiling MFI Zeolite Mesocrystal with Enhanced Catalytic Performance. Crystal Growth and Design, 2019, 19, 6192-6198.	1.4	9
106	Mesocrystal morphology regulation by "alkali metals ion switch― Re-examining zeolite nonclassical crystallization in seed-induced process. Journal of Colloid and Interface Science, 2022, 608, 1366-1376.	5.0	9
107	An Fe–Mn–Cu/SiO ₂ @silicalite-1 catalyst for CO hydrogenation: the role of the zeolite shell on light-olefin production. Catalysis Science and Technology, 2016, 6, 3559-3567.	2.1	8
108	<i>In situ</i> reconfiguration of plasma-engineered copper electrodes towards efficient electrocatalytic hydrogenation. Catalysis Science and Technology, 2022, 12, 4032-4039.	2.1	8

#	Article	lF	CITATIONS
109	Alkali-exchanged Y zeolites as superior deacidifying protective materials for paper relics: Effects of accessibility and strength of basic sites. Microporous and Mesoporous Materials, 2020, 293, 109786.	2.2	7
110	One-Pot Exfoliation and Functionalization of Zeolite Nanosheets for Protection of Paper-Based Relics. ACS Applied Nano Materials, 2021, 4, 10645-10656.	2.4	7
111	N-doped molybdenum carbides embedded in porous carbon for efficient hydrogen evolution. Materials Today Energy, 2022, 26, 100992.	2.5	7
112	Intercalationâ€Ðriven Defectâ€Engineering of MoS ₂ for Catalytic Transfer Hydrogenation. Advanced Materials Interfaces, 2022, 9, .	1.9	7
113	Effect of pyrazolium-derived compounds as templates in zeolite synthesis. RSC Advances, 2017, 7, 23272-23278.	1.7	6
114	Direct conversion of C6 sugars to methyl glycerate and glycolate in methanol. RSC Advances, 2018, 8, 30163-30170.	1.7	6
115	Catalysis and Stability Effect of Solvent Alcohol on the C6 Aldose Conversion toward Tetrose. ChemCatChem, 2019, 11, 4182-4188.	1.8	6
116	Facile fabrication of manganese carbonate and oxides shell structure. Journal of Materials Science, 2005, 40, 5025-5027.	1.7	5
117	Microwave Influence on Different M–O Bonds During MFI-Type Heteroatom (M) Zeolite Preparation. Industrial & Engineering Chemistry Research, 2017, 56, 11167-11174.	1.8	5
118	Selectively Functionalized Zeolite NaY Composite Materials for High-Efficiency Multiple Protection of Paper Relics. Industrial & Engineering Chemistry Research, 2020, 59, 11196-11205.	1.8	5
119	Dendritic Mesoporous Silica Hollow Spheres for Nano-Bioreactor Application. Nanomaterials, 2022, 12, 1940.	1.9	5
120	Nanowire accumulated Fe2O3/SiO2 spherical catalyst for Fischer-Tropsch synthesis. Chinese Journal of Catalysis, 2014, 35, 1661-1668.	6.9	4
121	Condition screening and process investigation of aldose transformation in borate-containing acidic phosphate buffer system under microwave irradiation. RSC Advances, 2014, 4, 39453-39462.	1.7	4
122	Activity modulation of core and shell in nanozeolite@enzyme bi-functional catalyst for dynamic kinetic resolution. Journal of Colloid and Interface Science, 2015, 438, 22-28.	5.0	4
123	Coâ€hydrolysis and Seedâ€Induced Synthesis of Basic Mesoporous ZSMâ€5 Zeolites with Enhanced Catalytic Performance. Chemistry - A European Journal, 2020, 26, 6147-6157.	1.7	4
124	Hierarchically porous graphitic carbon membrane with homogeneously encapsulated metallic nanoparticles as monolith electrodes for high-performance electrocatalysis and sensing. Journal of Colloid and Interface Science, 2020, 570, 223-231.	5.0	4
125	Observing a Zeolite Nucleus (Subcrystal) with a Uniform Framework Structure and Its Oriented Attachment without Singleâ€Molecule Addition. Angewandte Chemie, 2021, 133, 13556-13563.	1.6	4
126	Direct Preparation of High Thermal Stable PLAâ€Based Nanocomposite via Extra‣ow Loading of In Situ Exfoliated Ultrathin MWW Zeolite Nanosheets. Macromolecular Materials and Engineering, 2020, 305, 2000406.	1.7	3

#	Article	IF	CITATIONS
127	<i>c</i> -Axis-penetrated mesoporous MWW zeolite nanosheets: preparation by H ₂ O ₂ -induced micro-explosion and their enhanced properties. Inorganic Chemistry Frontiers, 2022, 9, 4030-4040.	3.0	3
128	Corrigendum to "Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: Effects of accessibility and strength of acid sites―[J. Catal. 302 (2013) 115–125]. Journal of Catalysis, 2014, 311, 169.	3.1	2
129	Mesoporous nano-WOx/ZrO2: facile synthesis and improved catalysis. RSC Advances, 2016, 6, 82537-82540.	1.7	2
130	Fractal MTW Zeolite Crystals: Hidden Dimensions in Nanoporous Materials. Angewandte Chemie, 2017, 129, 11926-11930.	1.6	2
131	Specific microwave effect on Sn- and Ti-MFI zeolite synthesis. RSC Advances, 2017, 7, 35252-35256.	1.7	2
132	Facile Morphology and Porosity Regulation of Zeolite ZSM-5 Mesocrystals with Synergistically Enhanced Catalytic Activity and Shape Selectivity. Nanomaterials, 2022, 12, 1601.	1.9	2
133	Absorption and desorption characteristic of zeolites in gas sensor system. , 2008, , .		1
134	Determination of crystallinity of Chinese handmade papers by means of X-ray diffraction. Restaurator, 2020, 41, 69-86.	0.2	1
135	One-pot two-step process directly converting biomass-derived carbohydrate to lactide. Chemical Communications, 2022, 58, 4627-4630.	2.2	1
136	One-step selective dehydrogenation of cyclic hemiacetal sugars toward to their chiral lactones. Chinese Chemical Letters, 2023, 34, 107677.	4.8	1
137	Direct grafting synthesis of bi-functional Zr–Al-MWW zeolites and their catalytic characteristics in Lewis-BrÃ,nsted cascade reaction. Microporous and Mesoporous Materials, 2022, 341, 112110.	2.2	1
138	Mesoporous and Skeletal Molybdenum Carbide for Hydrogen Evolution Reaction: Diatomite-type Structure and Formation Mechanism. ChemElectroChem, 2017, 4, 2129-2129.	1.7	0
139	Frontispiece: Coâ€hydrolysis and Seedâ€Induced Synthesis of Basic Mesoporous ZSMâ€5 Zeolites with Enhanced Catalytic Performance. Chemistry - A European Journal, 2020, 26, .	1.7	0
140	Product Control and Insight into Conversion of C6 Aldose Toward C2, C4 and C6 Alditols in Oneâ€Pot Retroâ€Aldol Condensation and Hydrogenation Processes. ChemistryOpen, 2021, 10, 560-566.	0.9	0
141	A CP/MAS ¹³ C NMR investigation of cellulose ultrastructure in traditional Chinese handmade papers. Holzforschung, 2022, .	0.9	0