J Bandorowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3096314/publications.pdf

Version: 2024-02-01

361045 329751 1,366 46 20 37 citations h-index g-index papers 46 46 46 1597 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Naturally Occurring Human Glutathione S-transferase GSTP1-1 Isoforms with Isoleucine and Valine in Position 104 Differ in Enzymic Properties. FEBS Journal, 1994, 224, 893-899.	0.2	389
2	Novel Function of Human RLIP76: ATP-Dependent Transport of Glutathione Conjugates and Doxorubicinâ€. Biochemistry, 2000, 39, 9327-9334.	1.2	163
3	Phospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations. International Journal of Molecular Sciences, 2013, 14, 5036-5129.	1.8	55
4	ATP-Dependent Human Erythrocyte Glutathione-Conjugate Transporter. II. Functional Reconstitution of Transport Activityâ€. Biochemistry, 1998, 37, 5239-5248.	1.2	51
5	ATP-Dependent Human Erythrocyte Glutathione-Conjugate Transporter. I. Purification, Photoaffinity Labeling, and Kinetic Characteristics of ATPase Activityâ€. Biochemistry, 1998, 37, 5231-5238.	1.2	47
6	Acidic pH-induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules. FASEB Journal, 2001, 15, 1083-1085.	0.2	47
7	Annexin-A6 presents two modes of association with phospholipid membranes. A combined QCM-D, AFM and cryo-TEM study. Journal of Structural Biology, 2009, 168, 107-116.	1.3	44
8	Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease. Archives of Biochemistry and Biophysics, 2016, 593, 50-59.	1.4	43
9	Conformational states of annexin VI in solution induced by acidic pH. FEBS Letters, 2001, 496, 49-54.	1.3	40
10	Do annexins participate in lipid messenger mediated intracellular signaling? A question revisited . Molecular Membrane Biology, 2012, 29, 229-242.	2.0	36
11	Annexins as nucleotide-binding proteins: Facts and speculations. BioEssays, 2001, 23, 170-178.	1.2	28
12	GTP-Induced Membrane Binding and Ion Channel Activity of Annexin VI: Is Annexin VI a GTP Biosensor?. Biophysical Journal, 2002, 82, 2737-2745.	0.2	28
13	Temperature dependence of ligand–protein complex formation as reflected by saturation transfer difference NMR experiments. Magnetic Resonance in Chemistry, 2007, 45, 745-748.	1.1	27
14	Interaction of annexin A6 with cholesterol rich membranes is pH-dependent and mediated by the sterol OH. Journal of Colloid and Interface Science, 2010, 346, 436-441.	5.0	25
15	Cholesterol as a factor regulating intracellular localization of annexin A6 in Niemann–Pick type C human skin fibroblasts. Archives of Biochemistry and Biophysics, 2010, 493, 221-233.	1.4	25
16	A Putative Consensus Sequence for the Nucleotide-Binding Site of Annexin A6â€. Biochemistry, 2003, 42, 9137-9146.	1,2	24
17	Rabbit Aorta GlutathioneS-Transferases and Their Role in Bioactivation of Trinitroglycerin. Toxicology and Applied Pharmacology, 1996, 140, 378-386.	1.3	23
18	Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Cellular and Molecular Life Sciences, 2012, 69, 1773-1785.	2.4	23

#	Article	IF	Citations
19	Fluorescence Spectroscopic Studies on Interactions between Liver Annexin VI and Nucleotides. A Possible Role for a Tryptophan Residue. FEBS Journal, 1997, 248, 238-244.	0.2	21
20	Structure of Human Annexin A6 at the Air-Water Interface and in a Membrane-Bound State. Biophysical Journal, 2004, 87, 1215-1226.	0.2	21
21	Effects of Mutagenesis of W343 in Human Annexin A6 Isoform 1 on Its Interaction with GTP: Nucleotide-Induced Oligomer Formation and Ion Channel Activity. Biochemistry, 2006, 45, 4965-4973.	1.2	20
22	Impaired dynamics of the late endosome/lysosome compartment in human Niemann–Pick type C skin fibroblasts carrying mutation in NPC1 gene. Molecular BioSystems, 2012, 8, 1197.	2.9	20
23	Localization of Annexin A6 in Matrix Vesicles During Physiological Mineralization. International Journal of Molecular Sciences, 2020, 21, 1367.	1.8	20
24	Calcium―and pHâ€dependent localization of annexin A6 isoforms in Balb/3T3 fibroblasts reflecting their potential participation in vesicular transport. Journal of Cellular Biochemistry, 2008, 104, 418-434.	1.2	19
25	N- and C-Terminal Halves of Human Annexin VI Differ in Ability to Form Low pH-Induced Ion Channels. Biochemical and Biophysical Research Communications, 2001, 284, 785-791.	1.0	18
26	Annexin A6 is recruited into lipid rafts of Niemann–Pick type C disease fibroblasts in a Ca2+-dependent manner. Biochemical and Biophysical Research Communications, 2011, 405, 192-196.	1.0	17
27	Mechanisms for xenobiotic transport in biological membranes. Toxicology Letters, 1999, 106, 107-118.	0.4	15
28	Two-Step Membrane Binding of NDPK-B Induces Membrane Fluidity Decrease and Changes in Lipid Lateral Organization and Protein Cluster Formation. Langmuir, 2016, 32, 12923-12933.	1.6	9
29	Calcium- and proton-dependent relocation of annexin A6 in Jurkat T cells stimulated for interleukin-2 secretion Acta Biochimica Polonica, 2007, 54, 261-271.	0.3	8
30	Interaction of AnxA6 with isolated and artificial lipid microdomains; importance of lipid composition and calcium content. Molecular BioSystems, 2013, 9, 668.	2.9	7
31	Acidic pHâ€induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules. FASEB Journal, 2001, 15, 1083-1085.	0.2	7
32	Exploring NMR methods as a tool to select suitable fluorescent nucleotide analogues. Organic and Biomolecular Chemistry, 2013, 11, 5332.	1.5	6
33	Src and ROCK Kinases Differentially Regulate Mineralization of Human Osteosarcoma Saos-2 Cells. International Journal of Molecular Sciences, 2019, 20, 2872.	1.8	6
34	Topoisomerase I in actively growing plasmodia and during differentiation of the slime mold Physarum polycephalum. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1088, 36-40.	2.4	5
35	Extracellular ATP and its effects on physiological and pathological mineralization. Current Opinion in Orthopaedics, 2007, 18, 460-466.	0.3	5
36	Recent Advances in NMR Studies of Lipids. Annual Reports on NMR Spectroscopy, 2015, 85, 195-246.	0.7	4

#	Article	IF	CITATIONS
37	Activation of mammalian terget of rapamycin kinase and glycogen synthase kinaseâ€3β accompanies abnormal accumulation of cholesterol in fibroblasts from Niemannâ€Pick type C patients. Journal of Cellular Biochemistry, 2019, 120, 6580-6588.	1.2	3
38	NMR of lipids. Nuclear Magnetic Resonance, 2013, , 362-382.	0.1	3
39	UDP hydrolase activity associated with the porcine liver annexin fraction. Biochimica Et Biophysica Acta - General Subjects, 2001, 1526, 70-76.	1.1	2
40	Probing nucleotide binding site of annexin A6. Vibrational Spectroscopy, 2004, 36, 233-236.	1.2	2
41	A novel retinoid binding property of human annexin A6. FEBS Letters, 2006, 580, 3065-3069.	1.3	2
42	Characterization of caged compounds binding to proteins by NMR spectroscopy. Biochemical and Biophysical Research Communications, 2010, 400, 447-451.	1.0	2
43	Chapter 9. NMR of lipids. Nuclear Magnetic Resonance, 2014, , 378-400.	0.1	2
44	NMR of lipids. Nuclear Magnetic Resonance, 2015, , 385-406.	0.1	2
45	Fluorescence evidence of annexin A6 translocation across membrane in model matrix vesicles during apatite formation. , 2022, 1 , .		2
46	Annexins as Neuroprotective Agents in the Central Nervous System. Current Medicinal Chemistry - Central Nervous System Agents, 2002, 2, 87-107.	0.6	0