
Bruno V Valentim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3096274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrative Study Assessing Space and Time Variations with Emphasis on Rare Earth Element (REE) Distribution and Their Potential on Ashes from Commercial (Colombian) Coal. Minerals (Basel,) Tj ETQq1 1 0.74	843 1240gBT	/O⊽erlock 10
2	Incineration of Aviary Manure: The Case Studies of Poultry Litter and Laying Hens Manure. Waste and Biomass Valorization, 2022, 13, 3335-3357.	3.4	7
3	Assessment of coal fly ash char as a substituting material of graphite with electrocatalytic activity for the oxygen reduction reaction. Sustainable Chemistry and Pharmacy, 2022, 27, 100705.	3.3	0
4	Application of Fe-rich coal fly ashes to enhanced reduction of 4-nitrophenol. , 2022, 2, 100019.		3
5	Simultaneous amorphous silica and phosphorus recovery from rice husk poultry litter ash. RSC Advances, 2021, 11, 8927-8939.	3.6	10
6	Evaluation of the sustainability of technologies to recover phosphorus from sewage sludge ash based on embodied energy and CO2 footprint. Journal of Cleaner Production, 2021, 289, 125762.	9.3	24
7	Editorial for Special Issue "Minerals and Elements from Fly Ash and Bottom Ash as a Source of Secondary Raw Materialsâ€: Minerals (Basel, Switzerland), 2021, 11, 438.	2.0	1
8	A Predictive Model for Maceral Discrimination by Means of Raman Spectra on Dispersed Organic Matter: A Case Study from the Carpathian Fold-and-Thrust Belt (Ukraine). Geosciences (Switzerland), 2021, 11, 213.	2.2	4
9	Coal bottom ash processing for capitalization according to circular economy concept. Minerals Engineering, 2021, 170, 107055.	4.3	6
10	Contrasts in maceral textures in progressive metamorphism versus near-surface hydrothermal metamorphism. International Journal of Coal Geology, 2021, 246, 103840.	5.0	10
11	Coal chars recovered from fly ash as promising electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 34679-34688.	7.1	5
12	Phosphorous and Silica Recovery from Rice Husk Poultry Litter Ash: A Sustainability Analysis Using a Zero-Waste Approach. Materials, 2021, 14, 6297.	2.9	3
13	Identification and Characterization of Ti-Spheres (Titanspheres) in Cork Powder Fly Ash. Waste and Biomass Valorization, 2020, 11, 2905-2923.	3.4	0
14	Acid functionalized coal fly ashes: New solid catalysts for levulinic acid esterification. Catalysis Today, 2020, 357, 74-83.	4.4	14
15	Characterization of superhigh-organic-sulfur Raša coal, Istria, Croatia, and its environmental implication. International Journal of Coal Geology, 2020, 217, 103344.	5.0	26
16	Assessment of Graphitized Coal Ash Char Concentrates as a Potential Synthetic Graphite Source. Minerals (Basel, Switzerland), 2020, 10, 986.	2.0	16
17	Could hot fluids be the cause of natural pyrolysis at the ragged edge of Herrin coal, Millport 7 ½' quadrangle, Hopkins County, Kentucky?. International Journal of Coal Geology, 2020, 231, 103603.	5.0	3

Backtracking to Parent Maceral from Produced Bitumen with Raman Spectroscopy. Minerals (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

BRUNO V VALENTIM

#	Article	IF	CITATIONS
19	Poultry litter ash characterisation and recovery. Waste Management, 2020, 111, 10-21.	7.4	22
20	Petrography of coal combustion char: A review. Fuel, 2020, 277, 118271.	6.4	13
21	Petrographic and micro-Raman spectroscopy study of inertinite discrete structureless bodies, fusinite, secretinite, and â€~ovoid' bodies infilling fusinite. International Journal of Coal Geology, 2020, 221, 103444.	5.0	Ο
22	Assessment of bottom ash landfilled at Ceplea Valley (Romania) as a source of rare earth elements. International Journal of Coal Geology, 2019, 201, 109-126.	5.0	23
23	Undifferentiated Inorganics in Coal Fly Ash and Bottom Ash: Calcispheres, Magnesiacalcispheres, and Magnesiaspheres. Minerals (Basel, Switzerland), 2018, 8, 140.	2.0	21
24	Assessment of thermal evolution of Paleozoic successions of the HolyÂCross Mountains (Poland). Marine and Petroleum Geology, 2017, 80, 112-132.	3.3	47
25	Organic geochemistry of funginite (Miocene, Eel River, Mendocino County, California, USA) and macrinite (Cretaceous, Inner Mongolia, China). International Journal of Coal Geology, 2017, 179, 60-71.	5.0	6
26	High incidence of otolith abnormality in juvenile European flounder Platichthys flesus from a tidal freshwater area. Marine Biology Research, 2017, 13, 933-941.	0.7	8
27	Development of a petrographic classification of fly-ash components from coal combustion and co-combustion. (An ICCP Classification System, Fly-Ash Working Group – Commission III.). International Journal of Coal Geology, 2017, 183, 188-203.	5.0	33
28	Reply to Narkiewicz (2017) comment on "Thermal evolution of Paleozoic successions of the Holy Cross Mountains (Poland)― Marine and Petroleum Geology, 2017, 88, 1114-1122.	3.3	1
29	Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky. International Journal of Coal Geology, 2016, 160-161, 63-72.	5.0	13
30	Characterization of bottom ash of Pliocene lignite as ceramic composites raw material by petrographic, SEM/EDS and Raman microspectroscopical methods. International Journal of Coal Geology, 2016, 168, 131-145.	5.0	23
31	Vermicular kaolinite relics in fly ash derived from Bokaro and Jharia coals (Jharkhand, India). International Journal of Coal Geology, 2016, 162, 151-157.	5.0	9
32	Notes on the occurrence of phosphate mineral relics and spheres (phosphospheres) in coal and biomass fly ash. International Journal of Coal Geology, 2016, 154-155, 43-56.	5.0	18
33	Characteristics of ferrospheres in fly ashes derived from Bokaro and Jharia (Jharkand, India) coals. International Journal of Coal Geology, 2016, 153, 52-74.	5.0	30
34	Notes on the occurrence of char plerospheres in fly ashes derived from Bokaro and Jharia coals (Jharkhand, India) and the influence of the combustion conditions on their genesis. International Journal of Coal Geology, 2016, 158, 29-43.	5.0	4
35	Multi-technique study of fly ash from the Bokaro and Jharia coalfields (Jharkhand state, India): A contribution to its use as a geoliner. International Journal of Coal Geology, 2015, 152, 25-38.	5.0	15
36	Relationships between the optical properties of coal macerals and the chars resulting from fluidized bed pyrolysis. International Journal of Coal Geology, 2013, 111, 80-89.	5.0	17

BRUNO V VALENTIM

#	Article	IF	CITATIONS
37	On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 2013, 118, 58-87.	5.0	258
38	ICCP "New Trends in Coal Science―Symposium — In memory of Alan Cook. International Journal of Coal Geology, 2013, 111, 1-2.	5.0	0
39	Coal Rank Increase and Aerial Oxidation by a Combination of Fourier Transform Infrared Spectroscopy with Multivariate Analysis. Spectroscopy Letters, 2013, 46, 277-285.	1.0	2
40	Notes on the origin of altered macerals in the Ragged Edge of the Pennsylvanian (Asturian) Herrin coalbed, Western Kentucky. International Journal of Coal Geology, 2013, 115, 24-40.	5.0	7
41	Integration of different sediment characteristics to discriminate between sources of coastal sediments. Geological Society Special Publication, 2013, 384, 97-108.	1.3	1
42	The potential application of magnetic susceptibility as a technique for soil forensic examinations. Geological Society Special Publication, 2013, 384, 65-73.	1.3	3
43	Raman Microspectroscopy of Genuine and Fake Euro Banknotes. Spectroscopy Letters, 2013, 46, 569-576.	1.0	21
44	Raman spectroscopy of coal macerals and fluidized bed char morphotypes. Fuel, 2012, 97, 443-449.	6.4	80
45	Nitrogen functionality in "oil window―rank range vitrinite rich coals and chars. Organic Geochemistry, 2011, 42, 502-509.	1.8	36
46	Comprehensive characterization of anthracite fly ash from a thermo-electric power plant and its potential environmental impact. International Journal of Coal Geology, 2011, 86, 204-212.	5.0	40
47	Notes on the origin of inertinite macerals in coal: Evidence for fungal and arthropod transformations of degraded macerals. International Journal of Coal Geology, 2011, 86, 231-240.	5.0	99
48	Case study of igneous intrusion effects on coal nitrogen functionalities. International Journal of Coal Geology, 2011, 86, 291-294.	5.0	25
49	Characterization of soils from the Algarve region (Portugal): A multidisciplinary approach for forensic applications. Science and Justice - Journal of the Forensic Science Society, 2011, 51, 77-82.	2.1	26
50	The procedure used to develop a coal char classification—Commission III Combustion Working Group of the International Committee for Coal and Organic Petrology. International Journal of Coal Geology, 2010, 81, 333-342.	5.0	62
51	Influence of feed and sampling systems on element partitioning in Kentucky fly ash. International Journal of Coal Geology, 2010, 82, 94-104.	5.0	11
52	Micro-Raman spectroscopy of collotelinite, fusinite and macrinite. International Journal of Coal Geology, 2010, 83, 415-422.	5.0	139
53	Petrographic characterization of economizer fly ash. Mining, Metallurgy and Exploration, 2009, 26, 208-216.	0.8	0
54	Quantitative colour analysis of beach and dune sediments for forensic applications: A Portuguese example. Forensic Science International, 2009, 190, 42-51.	2.2	23

BRUNO V VALENTIM

#	Article	IF	CITATION
55	SCANNING ELECTRON MICROSCOPY AND ENERGY-DISPERSIVE X-RAY SPECTROSCOPY OF LOW-SULFUR COAL FLY ASH. International Journal of Energy for A Clean Environment, 2009, 10, 147-166.	1.1	15
56	Variations in fly ash composition with sampling location: Case study from a Portuguese power plant. Coal Combustion and Gasification Products, 2009, 1, 14-24.	1.0	18
57	Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy. International Journal of Coal Geology, 2008, 73, 359-370.	5.0	56
58	Discussion on "Characteristics of Fly Ashes from Full-Scale Coal-Fired Power Plants and Their Relationship to Mercury Adsorption―by Lu et al Energy & Fuels, 2008, 22, 1055-1058.	5.1	5
59	Notes on the efficacy of wet versus dry screening of fly ash. Mining, Metallurgy and Exploration, 2008, 25, 143-148.	0.8	1
60	Combustion studies in a fluidised bed—The link between temperature, NOx and N2O formation, char morphology and coal type. International Journal of Coal Geology, 2006, 67, 191-201.	5.0	18
61	The identification of unusual microscopic features in coal and their derived chars: Influence on coal fluidized bed combustion. International Journal of Coal Geology, 2006, 67, 202-211.	5.0	15