Daniel Jose Vega-Nieva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3096147/publications.pdf Version: 2024-02-01

		840776	888059
22	315	11	17
papers	citations	h-index	g-index
22	22	22	433
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Modelling aboveground biomass and fuel load components at stand level in shrub communities in NW Spain. Forest Ecology and Management, 2022, 505, 119926.	3.2	11
2	Fuel-Specific Aggregation of Active Fire Detections for Rapid Mapping of Forest Fire Perimeters in Mexico. Forests, 2022, 13, 124.	2.1	2
3	Analysis of Near-Surface Temperature Lapse Rates in Mountain Ecosystems of Northern Mexico Using Landsat-8 Satellite Images and ECOSTRESS. Remote Sensing, 2022, 14, 162.	4.0	1
4	Evaluating a New Relative Phenological Correction and the Effect of Sentinel-Based Earth Engine Compositing Approaches to Map Fire Severity and Burned Area. Remote Sensing, 2022, 14, 3122.	4.0	5
5	Sintering and Fusibility Risks of Pellet Ash from Different Sources at Different Combustion Temperatures. Energies, 2022, 15, 5026.	3.1	5
6	Estimación de parámetros forestales mediante datos de Sentinel 2A en Pueblo Nuevo, Durango. Revista Mexicana De Ciencias Forestales, 2021, 12, 81-106.	0.3	0
7	Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. Science of the Total Environment, 2020, 718, 137313.	8.0	37
8	Near Real-Time Automated Early Mapping of the Perimeter of Large Forest Fires from the Aggregation of VIIRS and MODIS Active Fires in Mexico. Remote Sensing, 2020, 12, 2061.	4.0	18
9	Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests. Forests, 2020, 11, 11.	2.1	46
10	Individual Tree Diameter and Height Growth Models for 30 Tree Species in Mixed-Species and Uneven-Aged Forests of Mexico. Forests, 2020, 11, 429.	2.1	11
11	The Bioenergetic Potential of Four Oak Species from Northeastern Mexico. Forests, 2019, 10, 869.	2.1	15
12	New Experimental Evaluation Strategies Regarding Slag Prediction of Solid Biofuels in Pellet Boilers. Energy & Fuels, 2019, 33, 11985-11995.	5.1	8
13	Temporal patterns of active fire density and its relationship with a satellite fuel greenness index by vegetation type and region in Mexico during 2003–2014. Fire Ecology, 2019, 15, .	3.0	10
14	Modeling and Mapping Forest Fire Occurrence from Aboveground Carbon Density in Mexico. Forests, 2019, 10, 402.	2.1	12
15	Desarrollo de ecuaciones alométricas de biomasa para la regeneración de cuatro especies en Durango, México. Revista Mexicana De Ciencias Forestales, 2018, 9, .	0.3	4
16	Does forest biomass harvesting for energy reduce fire hazard in the Mediterranean basin? a case study in the Caroig Massif (Eastern Spain). European Journal of Forest Research, 2017, 136, 13-26.	2.5	30
17	Compatible System for Predicting Total and Merchantable Stem Volume over and under Bark, Branch Volume and Whole-Tree Volume of Pine Species. Forests, 2017, 8, 417.	2.1	16
18	Caracterización Bioenergética de los Residuos de Cosecha de las Principales Especies Forestales del Noroeste de España. Informacion Tecnologica (discontinued), 2015, 26, 03-12.	0.3	4

#	Article	IF	CITATIONS
19	Modeling the above and belowground biomass of planted and coppiced Eucalytpus globulus stands in NW Spain. Annals of Forest Science, 2015, 72, 967-980.	2.0	12
20	Developing a general method for the estimation of the fertility rating parameter of the 3-PG model: application in <i>Eucalyptus globulus</i> plantations in northwestern Spain. Canadian Journal of Forest Research, 2013, 43, 627-636.	1.7	19
21	A modular terrain model for daily variations in machine-specific forest soil trafficability. Canadian Journal of Soil Science, 2009, 89, 93-109.	1.2	33
22	Measuring and Predicting the Slagging of Woody and Herbaceous Mediterranean Biomass Fuels on a Domestic Pellet Boiler. Energy & Fuels, 0, , .	5.1	16