Maria Abad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3095477/publications.pdf

Version: 2024-02-01

16 papers	1,364 citations	12 h-index	996975 15 g-index
19	19	19	2373
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science, 2016, 354, .	12.6	466
2	Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature, 2013, 502, 340-345.	27.8	443
3	Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports, 2017, 8, 548-560.	4.8	108
4	Multiâ€omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell, 2022, 21, e13578.	6.7	60
5	Growth Inhibition by the Tumor Suppressor p33ING1 in Immortalized and Primary Cells: Involvement of Two Silencing Domains and Effect of Ras. Molecular and Cellular Biology, 2005, 25, 422-431.	2.3	48
6	AAV vector-mediated in vivo reprogramming into pluripotency. Nature Communications, 2018, 9, 2651.	12.8	43
7	Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer. Oncogene, 2014, 33, 2513-2519.	5.9	37
8	Common Telomere Changes during InÂVivo Reprogramming and Early Stages of Tumorigenesis. Stem Cell Reports, 2017, 8, 460-475.	4.8	33
9	The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. Aging Cell, 2011, 10, 158-171.	6.7	32
10	Ing1 Mediates p53 Accumulation and Chromatin Modification in Response to Oncogenic Stress. Journal of Biological Chemistry, 2007, 282, 31060-31067.	3.4	24
11	Transient exposure to miRâ€203 enhances the differentiation capacity of established pluripotent stem cells. EMBO Journal, 2020, 39, e104324.	7.8	16
12	The homeoprotein SIX1 controls cellular senescence through the regulation of p16INK4A and differentiation-related genes. Oncogene, 2016, 35, 3485-3494.	5.9	15
13	Transcriptional regulation of Sox2 by the retinoblastoma family of pocket proteins. Oncotarget, 2015, 6, 2992-3002.	1.8	14
14	ING Proteins in Cellular Senescence. Current Drug Targets, 2009, 10, 406-417.	2.1	11
15	CtIP-Specific Roles during Cell Reprogramming Have Long-Term Consequences in the Survival and Fitness of Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 8, 432-445.	4.8	7
16	A Versatile In Vivo System to Study Myc in Cell Reprogramming. Methods in Molecular Biology, 2021, 2318, 267-279.	0.9	O