
Clemens Kanzler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3095144/publications.pdf Version: 2024-02-01

CIEMENS KANZLED

#	Article	IF	CITATIONS
1	Systematic Studies on the Antioxidant Capacity and Volatile Compound Profile of Yellow Mealworm Larvae (T. molitor L.) under Different Drying Regimes. Insects, 2022, 13, 166.	2.2	10
2	Formation of melanoidins – Aldol reactions of heterocyclic and short-chain Maillard intermediates. Food Chemistry, 2022, 380, 131852.	8.2	16
3	How alanine catalyzes melanoidin formation and dehydration during synthesis from glucose. European Food Research and Technology, 2022, 248, 1615-1624.	3.3	4
4	Arabinoxylan-Based Microcapsules Being Loaded with Bee Products as Bioactive Food Components Are Able to Modulate the Cell Migration and Inflammatory Response—In Vitro Study. Nutrients, 2022, 14, 2529.	4.1	6
5	Structural characterization of polar melanoidins deriving from Maillard reaction intermediates – A model approach. Food Chemistry, 2022, 395, 133592.	8.2	12
6	The Formation of Methyl Ketones during Lipid Oxidation at Elevated Temperatures. Molecules, 2021, 26, 1104.	3.8	17
7	High-Resolution Mass Spectrometry Analysis of Melanoidins and Their Precursors Formed in a Model Study of the Maillard Reaction of Methylglyoxal with <scp>l</scp> -Alanine or <scp>l</scp> -Lysine. Journal of Agricultural and Food Chemistry, 2021, 69, 11960-11970.	5.2	21
8	Melanoidin formed from fructosylalanine contains more alanine than melanoidin formed from d-glucose with L-alanine. Food Chemistry, 2020, 305, 125459.	8.2	22
9	Melanoidins Formed by Heterocyclic Maillard Reaction Intermediates via Aldol Reaction and Michael Addition. Journal of Agricultural and Food Chemistry, 2020, 68, 332-339.	5.2	30
10	PCA-based identification and differentiation of FTIR data from model melanoidins with specific molecular compositions. Food Chemistry, 2019, 281, 106-113.	8.2	36
11	Basic Structure of Melanoidins Formed in the Maillard Reaction of 3-Deoxyglucosone and γ-Aminobutyric Acid. Journal of Agricultural and Food Chemistry, 2019, 67, 5197-5203.	5.2	47
12	Structural characterization of melanoidin formed from d-glucose and l-alanine at different temperatures applying FTIR, NMR, EPR, and MALDI-ToF-MS. Food Chemistry, 2018, 245, 761-767.	8.2	111
13	Browning Potential of C ₆ -α-Dicarbonyl Compounds under Maillard Conditions. Journal of Agricultural and Food Chemistry, 2017, 65, 1924-1931.	5.2	29
14	Formation of Reactive Intermediates, Color, and Antioxidant Activity in the Maillard Reaction of Maltose in Comparison to <scp>d</scp> -Glucose. Journal of Agricultural and Food Chemistry, 2017, 65, 8957-8965.	5.2	47
15	Antioxidant Properties of Heterocyclic Intermediates of the Maillard Reaction and Structurally Related Compounds. Journal of Agricultural and Food Chemistry, 2016, 64, 7829-7837.	5.2	56
16	Antioxidant Capacity of 1-Deoxy- <scp>d</scp> - <i>erythro</i> -hexo-2,3-diulose and <scp>d</scp> - <i>arabino</i> -Hexo-2-ulose. Journal of Agricultural and Food Chemistry, 2014, 62, 2837-2844.	5.2	24