
## Chao Zuo

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3094854/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Phase shifting algorithms for fringe projection profilometry: A review. Optics and Lasers in Engineering, 2018, 109, 23-59.                                                                  | 3.8  | 728       |
| 2  | Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review.<br>Optics and Lasers in Engineering, 2016, 85, 84-103.                                        | 3.8  | 666       |
| 3  | High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Optics and Lasers in Engineering, 2013, 51, 953-960. | 3.8  | 300       |
| 4  | Transport of intensity equation: a tutorial. Optics and Lasers in Engineering, 2020, 135, 106187.                                                                                            | 3.8  | 272       |
| 5  | Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective. Optics and Lasers in Engineering, 2015, 71, 20-32.              | 3.8  | 268       |
| 6  | High-resolution transport-of-intensity quantitative phase microscopy with annular illumination.<br>Scientific Reports, 2017, 7, 7654.                                                        | 3.3  | 256       |
| 7  | Fringe pattern analysis using deep learning. Advanced Photonics, 2019, 1, 1.                                                                                                                 | 11.8 | 248       |
| 8  | Deep learning in optical metrology: a review. Light: Science and Applications, 2022, 11, 39.                                                                                                 | 16.6 | 214       |
| 9  | High-speed three-dimensional profilometry for multiple objects with complex shapes. Optics Express, 2012, 20, 19493.                                                                         | 3.4  | 201       |
| 10 | Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second.<br>Optics and Lasers in Engineering, 2018, 102, 70-91.                                        | 3.8  | 186       |
| 11 | High-speed transport-of-intensity phase microscopy with an electrically tunable lens. Optics Express, 2013, 21, 24060.                                                                       | 3.4  | 172       |
| 12 | Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Optics Express, 2016, 24, 20724.                                                                              | 3.4  | 164       |
| 13 | Microscopic fringe projection profilometry: A review. Optics and Lasers in Engineering, 2020, 135, 106192.                                                                                   | 3.8  | 163       |
| 14 | General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique. Optics and Lasers in Engineering, 2014, 59, 56-71.                        | 3.8  | 156       |
| 15 | Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system. Optics<br>Express, 2016, 24, 20253.                                                             | 3.4  | 155       |
| 16 | Review of phase measuring deflectometry. Optics and Lasers in Engineering, 2018, 107, 247-257.                                                                                               | 3.8  | 152       |
| 17 | Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement. APL Photonics, 2020, 5, .                                                    | 5.7  | 146       |
| 18 | High dynamic range 3D measurements with fringe projection profilometry: a review. Measurement<br>Science and Technology, 2018, 29, 122001.                                                   | 2.6  | 145       |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry. Optics and Lasers in Engineering, 2018, 103, 127-138.                                          | 3.8  | 141       |
| 20 | Phase aberration compensation in digital holographic microscopy based on principal component analysis. Optics Letters, 2013, 38, 1724.                                              | 3.3  | 140       |
| 21 | Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. Optics Letters, 2020, 45, 1842.                                            | 3.3  | 139       |
| 22 | Efficient positional misalignment correction method for Fourier ptychographic microscopy.<br>Biomedical Optics Express, 2016, 7, 1336.                                              | 2.9  | 134       |
| 23 | Calibration of fringe projection profilometry: A comparative review. Optics and Lasers in Engineering, 2021, 143, 106622.                                                           | 3.8  | 130       |
| 24 | Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter - theory and applications. Optics Express, 2013, 21, 5346.                                         | 3.4  | 129       |
| 25 | Noninterferometric single-shot quantitative phase microscopy. Optics Letters, 2013, 38, 3538.                                                                                       | 3.3  | 128       |
| 26 | Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Optics and Lasers in Engineering, 2020, 128, 106003.                                    | 3.8  | 122       |
| 27 | Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing. Applied Optics, 2012, 51, 4477.                                     | 1.8  | 120       |
| 28 | Range Limited Bi-Histogram Equalization for image contrast enhancement. Optik, 2013, 124, 425-431.                                                                                  | 2.9  | 110       |
| 29 | Resolution Analysis in a Lens-Free On-Chip Digital Holographic Microscope. IEEE Transactions on Computational Imaging, 2020, 6, 697-710.                                            | 4.4  | 107       |
| 30 | On a universal solution to the transport-of-intensity equation. Optics Letters, 2020, 45, 3649.                                                                                     | 3.3  | 102       |
| 31 | High-speed in vitro intensity diffraction tomography. Advanced Photonics, 2019, 1, 1.                                                                                               | 11.8 | 100       |
| 32 | Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform. Optics Express, 2014, 22, 9220.               | 3.4  | 99        |
| 33 | Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix. Optics Express, 2015, 23, 14314.                       | 3.4  | 94        |
| 34 | Scene-based nonuniformity correction algorithm based on interframe registration. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1164. | 1.5  | 92        |
| 35 | High-speed 3D shape measurement using the optimized composite fringe patterns and stereo-assisted structured light system. Optics Express, 2019, 27, 2411.                          | 3.4  | 92        |
| 36 | Robust Chemical Synthesis of Membrane Proteins through a General Method of Removable Backbone<br>Modification. Journal of the American Chemical Society, 2016, 138, 3553-3561.      | 13.7 | 88        |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Sampling criteria for Fourier ptychographic microscopy in object space and frequency space. Optics<br>Express, 2016, 24, 15765.                                                     | 3.4  | 85        |
| 38 | Comparison of two-dimensional integration methods for shape reconstruction from gradient data.<br>Optics and Lasers in Engineering, 2015, 64, 1-11.                                 | 3.8  | 83        |
| 39 | Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations. Scientific Reports, 2017, 7, 1187.                                             | 3.3  | 82        |
| 40 | Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection. Optics Express, 2017, 25, 20381.                           | 3.4  | 81        |
| 41 | Temporal phase unwrapping using deep learning. Scientific Reports, 2019, 9, 20175.                                                                                                  | 3.3  | 81        |
| 42 | High-speed three-dimensional shape measurement based on cyclic complementary Gray-code light.<br>Optics Express, 2019, 27, 1283.                                                    | 3.4  | 79        |
| 43 | High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. Reports on Progress in Physics, 2020, 83, 096101.                     | 20.1 | 76        |
| 44 | A new microscopic telecentric stereo vision system - Calibration, rectification, and three-dimensional reconstruction. Optics and Lasers in Engineering, 2019, 113, 14-22.          | 3.8  | 74        |
| 45 | Display and detail enhancement for high-dynamic-range infrared images. Optical Engineering, 2011, 50, 1.                                                                            | 1.0  | 72        |
| 46 | Micro deep learning profilometry for high-speed 3D surface imaging. Optics and Lasers in Engineering, 2019, 121, 416-427.                                                           | 3.8  | 71        |
| 47 | Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light: Science and Applications, 2022, 11, . | 16.6 | 70        |
| 48 | Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Optics<br>Letters, 2018, 43, 3365.                                                       | 3.3  | 69        |
| 49 | Generalized framework for non-sinusoidal fringe analysis using deep learning. Photonics Research, 2021, 9, 1084.                                                                    | 7.0  | 69        |
| 50 | miR-335-5p targeting ICAM-1 inhibits invasion and metastasis of thyroid cancer cells. Biomedicine and<br>Pharmacotherapy, 2018, 106, 983-990.                                       | 5.6  | 63        |
| 51 | Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot<br>absolute 3D shape measurement. Opto-Electronic Advances, 2022, 5, 210021-210021.   | 13.3 | 63        |
| 52 | Dynamic 3-D measurement based on fringe-to-fringe transformation using deep learning. Optics<br>Express, 2020, 28, 9405.                                                            | 3.4  | 62        |
| 53 | New temporal high-pass filter nonuniformity correction based on bilateral filter. Optical Review, 2011, 18, 197-202.                                                                | 2.0  | 61        |
| 54 | Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy.<br>Scientific Reports, 2017, 7, 11777.                                         | 3.3  | 61        |

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Fast three-dimensional measurements for dynamic scenes with shiny surfaces. Optics<br>Communications, 2017, 382, 18-27.                                                            | 2.1  | 61        |
| 56 | Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry. Optics Express, 2019, 27, 2713.                                       | 3.4  | 59        |
| 57 | High-speed Fourier ptychographic microscopy based on programmable annular illuminations.<br>Scientific Reports, 2018, 8, 7669.                                                     | 3.3  | 58        |
| 58 | Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab).<br>PhotoniX, 2021, 2, .                                                          | 13.5 | 56        |
| 59 | Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect. Optics Express, 2020, 28, 2433.                                           | 3.4  | 56        |
| 60 | Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy.<br>Photonics Research, 2019, 7, 890.                                                | 7.0  | 53        |
| 61 | High-speed high dynamic range 3D shape measurement based on deep learning. Optics and Lasers in<br>Engineering, 2020, 134, 106245.                                                 | 3.8  | 51        |
| 62 | High-speed real-time 3D shape measurement based on adaptive depth constraint. Optics Express, 2018, 26, 22440.                                                                     | 3.4  | 49        |
| 63 | High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping. Optics and Lasers in Engineering, 2019, 115, 21-31.            | 3.8  | 48        |
| 64 | Deep-learning-based fringe-pattern analysis with uncertainty estimation. Optica, 2021, 8, 1507.                                                                                    | 9.3  | 48        |
| 65 | High-resolution real-time 360Ű 3D model reconstruction of a handheld object with fringe projection profilometry. Optics Letters, 2019, 44, 5751.                                   | 3.3  | 47        |
| 66 | Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations. Biomedical Optics Express, 2018, 9, 2526.               | 2.9  | 46        |
| 67 | Boundary-artifact-free phase retrieval with the transport of intensity equation II: applications to microlens characterization. Optics Express, 2014, 22, 18310.                   | 3.4  | 45        |
| 68 | Efficient quantitative phase microscopy using programmable annular LED illumination. Biomedical<br>Optics Express, 2017, 8, 4687.                                                  | 2.9  | 45        |
| 69 | High-precision real-time 3D shape measurement using a bi-frequency scheme and multi-view system.<br>Applied Optics, 2017, 56, 3646.                                                | 2.1  | 45        |
| 70 | Phase retrieval using spatially modulated illumination. Optics Letters, 2014, 39, 3615.                                                                                            | 3.3  | 44        |
| 71 | Zonal wavefront reconstruction in quadrilateral geometry for phase measuring deflectometry.<br>Applied Optics, 2017, 56, 5139.                                                     | 2.1  | 43        |
| 72 | Highly porous nickel oxide thin films prepared by a hydrothermal synthesis method for electrochromic application. Journal of Physics and Chemistry of Solids, 2013, 74, 1522-1526. | 4.0  | 41        |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Automatic identification and removal of outliers for high-speed fringe projection profilometry.<br>Optical Engineering, 2013, 52, 013605.                             | 1.0 | 41        |
| 74 | High dynamic range 3D shape measurement based on the intensity response function of a camera.<br>Applied Optics, 2018, 57, 1378.                                      | 1.8 | 41        |
| 75 | Deep learning-based fringe modulation-enhancing method for accurate fringe projection profilometry. Optics Express, 2020, 28, 21692.                                  | 3.4 | 41        |
| 76 | Absolute three-dimensional micro surface profile measurement based on a Greenough-type stereomicroscope. Measurement Science and Technology, 2017, 28, 045004.        | 2.6 | 40        |
| 77 | Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation. Optics Express, 2014, 22, 17172.        | 3.4 | 39        |
| 78 | Improved intensity-optimized dithering technique for 3D shape measurement. Optics and Lasers in Engineering, 2015, 66, 158-164.                                       | 3.8 | 39        |
| 79 | Spline based least squares integration for two-dimensional shape or wavefront reconstruction.<br>Optics and Lasers in Engineering, 2017, 91, 221-226.                 | 3.8 | 39        |
| 80 | Single-shot 3D shape measurement using an end-to-end stereo matching network for speckle projection profilometry. Optics Express, 2021, 29, 13388.                    | 3.4 | 39        |
| 81 | Composite fringe projection deep learning profilometry for single-shot absolute 3D shape measurement. Optics Express, 2022, 30, 3424.                                 | 3.4 | 38        |
| 82 | High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion. Optics Communications, 2014, 329, 44-56. | 2.1 | 36        |
| 83 | Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms. Optics Letters, 2015, 40, 1976.   | 3.3 | 36        |
| 84 | Vignetting effect in Fourier ptychographic microscopy. Optics and Lasers in Engineering, 2019, 120, 40-48.                                                            | 3.8 | 36        |
| 85 | High-resolution real-time 360â~ 3D surface defect inspection with fringe projection profilometry. Optics and Lasers in Engineering, 2021, 137, 106382.                | 3.8 | 35        |
| 86 | Direct continuous phase demodulation in digital holography with use of the transport-of-intensity equation. Optics Communications, 2013, 309, 221-226.                | 2.1 | 34        |
| 87 | Graphics processing unit–assisted real-time three-dimensional measurement using speckle-embedded<br>fringe. Applied Optics, 2015, 54, 6865.                           | 2.1 | 34        |
| 88 | Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging. Optics and Lasers in Engineering, 2016, 80, 24-31.   | 3.8 | 34        |
| 89 | Adaptive denoising method for Fourier ptychographic microscopy. Optics Communications, 2017, 404, 23-31.                                                              | 2.1 | 34        |
| 90 | Variational Hilbert Quantitative Phase Imaging. Scientific Reports, 2020, 10, 13955.                                                                                  | 3.3 | 34        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Regional cerebral metabolism alterations affect resting-state functional connectivity in major depressive disorder. Quantitative Imaging in Medicine and Surgery, 2018, 8, 910-924.                | 2.0 | 33        |
| 92  | Optimal principal component analysis-based numerical phase aberration compensation method for digital holography. Optics Letters, 2016, 41, 1293.                                                  | 3.3 | 32        |
| 93  | Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging. Optics Letters, 2021, 46, 2023.                                                    | 3.3 | 32        |
| 94  | Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array. Optics and Lasers in Engineering, 2017, 95, 26-34.                              | 3.8 | 31        |
| 95  | Real-time high dynamic range 3D measurement using fringe projection. Optics Express, 2020, 28, 24363.                                                                                              | 3.4 | 30        |
| 96  | Lensfree dynamic super-resolved phase imaging based on active micro-scanning. Optics Letters, 2018, 43, 3714.                                                                                      | 3.3 | 29        |
| 97  | Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast. APL Photonics, 2019, 4, 121301.                                                        | 5.7 | 29        |
| 98  | Calibration method for panoramic 3D shape measurement with plane mirrors. Optics Express, 2019, 27, 36538.                                                                                         | 3.4 | 28        |
| 99  | Optimal illumination pattern for transport-of-intensity quantitative phase microscopy. Optics Express, 2018, 26, 27599.                                                                            | 3.4 | 27        |
| 100 | Dynamic microscopic 3D shape measurement based on marker-embedded Fourier transform profilometry. Applied Optics, 2018, 57, 772.                                                                   | 1.8 | 27        |
| 101 | Improved interframe registration based nonuniformity correction for focal plane arrays. Infrared Physics and Technology, 2012, 55, 263-269.                                                        | 2.9 | 26        |
| 102 | High-precision real-time 3D shape measurement based on a quad-camera system. Journal of Optics<br>(United Kingdom), 2018, 20, 014009.                                                              | 2.2 | 26        |
| 103 | Microscopic 3D measurement of shiny surfaces based on a multi-frequency phase-shifting scheme.<br>Optics and Lasers in Engineering, 2019, 122, 1-7.                                                | 3.8 | 25        |
| 104 | Multimodal super-resolution reconstruction of infrared and visible images via deep learning. Optics and Lasers in Engineering, 2022, 156, 107078.                                                  | 3.8 | 25        |
| 105 | Shape reconstruction from gradient data in an arbitrarily-shaped aperture by iterative discrete cosine transforms in Southwell configuration. Optics and Lasers in Engineering, 2015, 67, 176-181. | 3.8 | 24        |
| 106 | Two-dimensional stitching interferometry for self-calibration of high-order additive systematic errors. Optics Express, 2019, 27, 26940.                                                           | 3.4 | 24        |
| 107 | Scene-based nonuniformity correction method using multiscale constant statistics. Optical Engineering, 2011, 50, 1.                                                                                | 1.0 | 23        |
| 108 | Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement. Optics and Lasers in Engineering, 2016, 78, 35-47.   | 3.8 | 23        |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Registration method for infrared images under conditions of fixed-pattern noise. Optics<br>Communications, 2012, 285, 2293-2302.                                                 | 2.1 | 22        |
| 110 | Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns. Optics Express, 2017, 25, 540.                                       | 3.4 | 22        |
| 111 | Real-time complex amplitude reconstruction method for beam quality M^2 factor measurement. Optics Express, 2017, 25, 20142.                                                      | 3.4 | 22        |
| 112 | Range limited double-thresholds multi-histogram equalization for image contrast enhancement.<br>Optical Review, 2015, 22, 246-255.                                               | 2.0 | 20        |
| 113 | 3D Imaging Based on Depth Measurement Technologies. Sensors, 2018, 18, 3711.                                                                                                     | 3.8 | 20        |
| 114 | Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection. Measurement Science and Technology, 2017, 28, 075010.             | 2.6 | 19        |
| 115 | Single-shot color object reconstruction through scattering medium based on neural network. Optics and Lasers in Engineering, 2021, 136, 106310.                                  | 3.8 | 19        |
| 116 | A two-frame approach for scene-based nonuniformity correction in array sensors. Infrared Physics and Technology, 2013, 60, 190-196.                                              | 2.9 | 18        |
| 117 | Resolution-enhanced intensity diffraction tomography in high numerical aperture label-free microscopy. Photonics Research, 2020, 8, 1818.                                        | 7.0 | 18        |
| 118 | Multimodal computational microscopy based on transport of intensity equation. Journal of Biomedical Optics, 2016, 21, 1.                                                         | 2.6 | 17        |
| 119 | Quantitative Phase Imaging Camera With a Weak Diffuser. Frontiers in Physics, 2019, 7, .                                                                                         | 2.1 | 17        |
| 120 | Has 3D finally come of age? ——An introduction to 3D structured-light sensor. Hongwai Yu Jiguang<br>Gongcheng/Infrared and Laser Engineering, 2020, 49, 303001-303001.            | 0.4 | 17        |
| 121 | Iterative optimum frequency combination method for high efficiency phase imaging of absorptive objects based on phase transfer function. Optics Express, 2015, 23, 28031.        | 3.4 | 16        |
| 122 | Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy. Applied Optics, 2019, 58, 389. | 1.8 | 16        |
| 123 | Dual-mode phase and fluorescence imaging with a confocal laser scanning microscope. Optics Letters, 2018, 43, 5689.                                                              | 3.3 | 16        |
| 124 | A carrier removal technique for Fourier transform profilometry based on principal component analysis. Optics and Lasers in Engineering, 2015, 74, 80-86.                         | 3.8 | 15        |
| 125 | Optimal wavelength selection strategy in temporal phase unwrapping with projection distance minimization. Applied Optics, 2018, 57, 2352.                                        | 1.8 | 15        |
| 126 | Light field moment imaging: comment. Optics Letters, 2014, 39, 654.                                                                                                              | 3.3 | 14        |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Two-dimensional stitching interferometry based on tilt measurement. Optics Express, 2018, 26, 23278.                                                                                          | 3.4 | 13        |
| 128 | Multiobjective Location Model Design Based on Government Subsidy in the Recycling of CDW.<br>Mathematical Problems in Engineering, 2017, 2017, 1-9.                                           | 1.1 | 12        |
| 129 | High-dynamic-range 3D shape measurement based on time domain superposition. Measurement Science<br>and Technology, 2019, 30, 065004.                                                          | 2.6 | 12        |
| 130 | Wide-field anti-aliased quantitative differential phase contrast microscopy. Optics Express, 2018, 26, 25129.                                                                                 | 3.4 | 12        |
| 131 | Fourier Ptychographic Microscopy: Theory, Advances, and Applications. Guangxue Xuebao/Acta Optica<br>Sinica, 2016, 36, 1011005.                                                               | 1.2 | 12        |
| 132 | Active depth estimation from defocus using a camera array. Applied Optics, 2018, 57, 4960.                                                                                                    | 1.8 | 11        |
| 133 | Dynamic 3D measurement of thermal deformation based on geometric-constrained stereo-matching with a stereo microscopic system. Measurement Science and Technology, 2019, 30, 125007.          | 2.6 | 11        |
| 134 | Upregulation of miR-150-5p alleviates LPS-induced inflammatory response and apoptosis of RAW264.7 macrophages by targeting Notch1. Open Life Sciences, 2020, 15, 544-552.                     | 1.4 | 11        |
| 135 | Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography. Optics Letters, 2022, 47, 969.                                                          | 3.3 | 11        |
| 136 | Comparative assessment of astigmatism-corrected Czerny-Turner imaging spectrometer using off-the-shelf optics. Optics Communications, 2017, 388, 53-61.                                       | 2.1 | 10        |
| 137 | High-sensitive ultrasonic sensor using fiber-tip PVC diaphragm Fabry-Perot interferometer and its imaging application. Sensors and Actuators A: Physical, 2018, 279, 474-480.                 | 4.1 | 10        |
| 138 | Calibration and rectification of bi-telecentric lenses in Scheimpflug condition. Optics and Lasers in Engineering, 2022, 149, 106793.                                                         | 3.8 | 10        |
| 139 | Generation of Photonic Hooks from Patchy Microcylinders. Photonics, 2021, 8, 466.                                                                                                             | 2.0 | 10        |
| 140 | Multi-pitch self-calibration measurement using a nano-accuracy surface profiler for X-ray mirror metrology. Optics Express, 2020, 28, 23060.                                                  | 3.4 | 10        |
| 141 | Isolation and comparison of mesenchymal stem cell-like cells derived from human gastric cancer tissues and corresponding ovarian metastases. Molecular Medicine Reports, 2016, 13, 1788-1794. | 2.4 | 9         |
| 142 | A color-corrected strategy for information multiplexed Fourier ptychographic imaging. Optics<br>Communications, 2017, 405, 406-411.                                                           | 2.1 | 9         |
| 143 | Accurate quantitative phase imaging by the transport of intensity equation: a mixed-transfer-function approach. Optics Letters, 2021, 46, 1740.                                               | 3.3 | 9         |
| 144 | Optimization analysis of partially coherent illumination for refractive index tomographic microscopy. Optics and Lasers in Engineering, 2021, 143, 106624.                                    | 3.8 | 9         |

| #   | Article                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | DeepDensity: Convolutional neural network based estimation of local fringe pattern density. Optics and Lasers in Engineering, 2021, 145, 106675.                                            | 3.8  | 9         |
| 146 | Composite deep learning framework for absolute 3D shape measurement based on single fringe phase retrieval and speckle correlation. JPhys Photonics, 2020, 2, 045009.                       | 4.6  | 9         |
| 147 | Non-Interferometric Phase Retrieval and Quantitative Phase Microscopy Based on Transport of<br>Intensity Equation: A Review. Zhongguo Jiguang/Chinese Journal of Lasers, 2016, 43, 0609002. | 1.2  | 9         |
| 148 | Deep Learning Based Computational Imaging: Status, Challenges, and Future. Guangxue Xuebao/Acta<br>Optica Sinica, 2020, 40, 0111003.                                                        | 1.2  | 9         |
| 149 | Accelerated Fourier ptychographic diffraction tomography with sparse annular <scp>LED</scp><br>illuminations. Journal of Biophotonics, 2022, 15, e202100272.                                | 2.3  | 9         |
| 150 | Autofocusing Algorithm for Pixel-Super-Resolved Lensfree On-Chip Microscopy. Frontiers in Physics, 2021, 9, .                                                                               | 2.1  | 8         |
| 151 | Super-Resolution Imaging with Patchy Microspheres. Photonics, 2021, 8, 513.                                                                                                                 | 2.0  | 8         |
| 152 | Intrapancreatic accessory spleen: Evaluation with CT and MRI. Experimental and Therapeutic Medicine, 2018, 16, 3623-3631.                                                                   | 1.8  | 7         |
| 153 | Preliminary application of 125l–nivolumab to detect PD-1 expression in colon cancer via SPECT. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1237-1242.                      | 1.5  | 7         |
| 154 | Efficient single image stripe nonuniformity correction method for infrared focal plane arrays.<br>Optical Review, 2012, 19, 355-357.                                                        | 2.0  | 6         |
| 155 | Single-shot spatial frequency multiplex fringe pattern for phase unwrapping using deep learning. ,<br>2020, , .                                                                             |      | 6         |
| 156 | Deep Learning Enabled Scalable Calibration of a Dynamically Deformed Multimode Fiber. Advanced Photonics Research, 2022, 3, .                                                               | 3.6  | 6         |
| 157 | Scene based nonuniformity correction based on block ergodicity for infrared focal plane arrays.<br>Optik, 2012, 123, 833-840.                                                               | 2.9  | 5         |
| 158 | Phase extraction for dual-wavelength phase-shift Fizeau interferometry in the presence of multi-beam interference. Optics Communications, 2017, 402, 489-497.                               | 2.1  | 5         |
| 159 | Enhancing single-shot fringe pattern phase demodulation using advanced variational image decomposition. Journal of Optics (United Kingdom), 2019, 21, 045702.                               | 2.2  | 5         |
| 160 | Low-Light-Level Image Super-Resolution Reconstruction Based on a Multi-Scale Features Extraction Network. Photonics, 2021, 8, 321.                                                          | 2.0  | 5         |
| 161 | Microscopic fringe projection profilometry systems in Scheimpflug condition and performance comparison. Surface Topography: Metrology and Properties, 2022, 10, 024004.                     | 1.6  | 5         |
| 162 | Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks.<br>Light: Science and Applications, 2022, 11, .                                          | 16.6 | 5         |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Comparison of Digital Holography and Transport of Intensity for Quantitative Phase Contrast<br>Imaging. , 2014, , 137-142.                                                                                          |     | 4         |
| 164 | Arsenite Increases Linc-ROR in Human Bronchial Epithelial Cells that Can Be Inhibited by Antioxidant<br>Factors. Biological Trace Element Research, 2020, 198, 131-141.                                             | 3.5 | 4         |
| 165 | Real-time binocular stereo vision system based on FPGA. , 2018, , .                                                                                                                                                 |     | 4         |
| 166 | Absorption and phase decoupling in transport of intensity diffraction tomography. Optics and Lasers in Engineering, 2022, 156, 107082.                                                                              | 3.8 | 4         |
| 167 | A commercialized digital holographic microscope with complete software supporting. , 2020, , .                                                                                                                      |     | 4         |
| 168 | Transport of intensity equation: a new approach to phase and light field. , 2014, , .                                                                                                                               |     | 3         |
| 169 | 10.6μm Infrared light photoinduced insulator-to-metal transition in vanadium dioxide. Infrared Physics and Technology, 2014, 64, 103-107.                                                                           | 2.9 | 3         |
| 170 | Automatic high order aberrations correction for digital holographic microscopy based on<br>orthonormal polynomials fitting over irregular shaped aperture. Journal of Optics (United Kingdom),<br>2019, 21, 045609. | 2.2 | 3         |
| 171 | An auto-focusing reflection-type lens-less digital holographic microscope. , 2021, , .                                                                                                                              |     | 3         |
| 172 | Real-time three-dimensional infrared imaging using fringe projection prof ilometry. Chinese Optics<br>Letters, 2013, 11, S21101-321104.                                                                             | 2.9 | 3         |
| 173 | Application of deep learning technology to fringe projection 3D imaging. Hongwai Yu Jiguang<br>Gongcheng/Infrared and Laser Engineering, 2020, 49, 303018-303018.                                                   | 0.4 | 3         |
| 174 | New developments in transport of intensity equation for phase retrieval and computational imaging. , 2014, , .                                                                                                      |     | 2         |
| 175 | Spectrum aliasing minimization for Fourier ptychographic microscopy based on annular illumination optimization. , 2021, , .                                                                                         |     | 2         |
| 176 | Calibration of telecentric cameras with distortion center estimation. , 2018, , .                                                                                                                                   |     | 2         |
| 177 | Bi-frequency temporal phase unwrapping using deep learning. , 2019, , .                                                                                                                                             |     | 2         |
| 178 | High-speed in vitro intensity diffraction tomography. , 2019, , .                                                                                                                                                   |     | 2         |
| 179 | Video-rate quantitative phase microscopy based on Fourier ptychography with annular illuminations. , 2018, , .                                                                                                      |     | 2         |
| 180 | Review of the development of differential phase contrast microscopy. Hongwai Yu Jiguang<br>Gongcheng/Infrared and Laser Engineering, 2019, 48, 603014.                                                              | 0.4 | 2         |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Lens-free on-chip microscopy: theory, advances, and applications. Hongwai Yu Jiguang<br>Gongcheng/Infrared and Laser Engineering, 2019, 48, 603009.                                   | 0.4 | 2         |
| 182 | High dynamic range and real-time 3D measurement based on a multi-view system. , 2020, , .                                                                                             |     | 2         |
| 183 | Learning-based absolute 3D shape measurement based on single fringe phase retrieval and speckle correlation. , 2020, , .                                                              |     | 2         |
| 184 | SNR Improvement in Three-Step Phase Shifting Profilometry. , 2012, , .                                                                                                                |     | 1         |
| 185 | Scene-Based Nonuniformity Correction with Multiframe Registration. , 2012, , .                                                                                                        |     | 1         |
| 186 | Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix. , 2015, , .                                                                                  |     | 1         |
| 187 | Quantitative phase measurement for wafer-level optics. , 2015, , .                                                                                                                    |     | 1         |
| 188 | Phase retrieval in arbitrarily shaped aperture with the transport-of-intensity equation. Proceedings of SPIE, 2015, , .                                                               | 0.8 | 1         |
| 189 | Coded multi-angular illumination for Fourier ptychography based on Hadamard codes. , 2015, , .                                                                                        |     | 1         |
| 190 | Computational microscopy with programmable illumination and coded aperture. , 2017, , .                                                                                               |     | 1         |
| 191 | A simplified imaging model of bi-telecentric lenses under Scheimpflug condition and its calibration. , 2021, , .                                                                      |     | 1         |
| 192 | Quantitative weak phase approximation analysis of quantitative phase imaging based on asymmetric illumination. , 2021, , .                                                            |     | 1         |
| 193 | Pixel super resolution imaging method based on coded aperture modulation. , 2021, , .                                                                                                 |     | 1         |
| 194 | super resolution reconstruction of low light level image based on the feature extraction convolution neural network. , 2021, , .                                                      |     | 1         |
| 195 | An openCL-based speckle matching on the monocular 3D sensor using speckle projection. , 2021, , .                                                                                     |     | 1         |
| 196 | Quantitative phase imaging camera with a weak diffuser based on the transport of intensity equation. , 2019, , .                                                                      |     | 1         |
| 197 | NONUNIFORMITY CORRECTION FOR INFRARED FOCAL PLANE ARRAYS BASED ON ENVIRONMENTAL<br>TEMPERATURE. Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2010, 29, 49-52. | 0.2 | 1         |
| 198 | Real-Time Three-Dimensional Measurement Composite of Epipolar Constraint and Speckle Correlation.<br>Guangxue Xuebao/Acta Optica Sinica, 2016, 36, 1012003.                           | 1.2 | 1         |

| #   | Article                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Three dimensional micro surface measurement system based on stereomicroscope. Journal of Applied Optics, 2017, 38, 607-611.                | 0.2 | 1         |
| 200 | Micro Fourier Transform Profilometry (μFTP): 3D imaging at 10,000 fps. , 2018, , .                                                         |     | 1         |
| 201 | System Calibration for Panoramic 3D Measurement with Plane Mirrors. Lecture Notes in Computer Science, 2019, , 15-26.                      | 1.3 | 1         |
| 202 | Transport-of-intensity equation (TIE) based phase imaging in a confocal laser scanning microscope. ,<br>2019, , .                          |     | 1         |
| 203 | Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations. , 2019, , .     |     | 1         |
| 204 | The optimization criteria for resolution improvement in a lens-free on-chip digital holographic microscope. , 2019, , .                    |     | 1         |
| 205 | Video-rate isotropic quantitative differential phase contrast microscopy based on color-multiplexed annular illumination. , 2019, , .      |     | 1         |
| 206 | High-speed 3D shape measurement with the multi-view system using deep learning. , 2019, , .                                                |     | 1         |
| 207 | High-speed 3D measurements at 20,000Hz with deep convolutional neural networks. , 2019, , .                                                |     | 1         |
| 208 | A computational super-resolution technique based on coded aperture imaging. , 2020, , .                                                    |     | 1         |
| 209 | Lensfree super-resolved microscopy based on multi-wavelength multiplexing. , 2020, , .                                                     |     | 1         |
| 210 | Optimal annular illumination pattern for Fourier ptychographic microscopy based on spectrum aliasing minimization. , 2020, , .             |     | 1         |
| 211 | An iterative compensation solution to the transport-of-intensity equation. , 2020, , .                                                     |     | 1         |
| 212 | Three dimensional confocal photoacoustic dermoscopy with an autofocusing sonoâ€opto probe.<br>Journal of Biophotonics, 2022, , e202100323. | 2.3 | 1         |
| 213 | Single-shot quantitative phase microscopy with the transport-of-intensity equation. Proceedings of SPIE, 2013, , .                         | 0.8 | 0         |
| 214 | Quantitative phase from defocused intensity by image deconvolution. , 2013, , .                                                            |     | 0         |
| 215 | Real-time 3D measurement based on structured light illumination considering camera lens distortion.<br>Proceedings of SPIE, 2014, , .      | 0.8 | 0         |
| 216 | Digital holography to light field. Proceedings of SPIE, 2014, , .                                                                          | 0.8 | 0         |

| #   | Article                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Optimized dithering technique for 3D shape measurement based on intensity residual error.<br>Proceedings of SPIE, 2014, , .                       | 0.8 | 0         |
| 218 | Phase space representation of transport of intensity phase retrieval for partially coherent fields. , 2014, , .                                   |     | 0         |
| 219 | Silicon wafer microstructure imaging using InfraRed Transport of Intensity Equation. , 2015, , .                                                  |     | 0         |
| 220 | Phase-space analysis of transport of intensity equation under partially coherent illumination. , 2015, , .                                        |     | 0         |
| 221 | Optimized multiplexing super resolution imaging based on a Fourier ptychographic microscope. , 2015, ,                                            |     | Ο         |
| 222 | Principal component analysis based carrier removal approach for Fourier transform profilometry. , 2015, , .                                       |     | 0         |
| 223 | Optimum defocus planes selection method for transport of intensity phase imaging based on phase transfer function. Proceedings of SPIE, 2015, , . | 0.8 | Ο         |
| 224 | Software design of a digital holographic microscope based on MFC, multi-document and multi-thread.<br>Proceedings of SPIE, 2015, , .              | 0.8 | 0         |
| 225 | A compact and lensless digital holographic microscope setup. , 2015, , .                                                                          |     | Ο         |
| 226 | GPU-assisted real-time three dimensional shape measurement by speckle-embedded fringe. , 2015, , .                                                |     | 0         |
| 227 | A carrier removal approach for fringe projection profilometry using principal component analysis. , 2015, , .                                     |     | Ο         |
| 228 | Spatial-spectral data redundancy requirement for Fourier ptychographic microscopy. Proceedings of SPIE, 2016, , .                                 | 0.8 | 0         |
| 229 | Computational method for multi-modal microscopy based on transport of intensity equation.<br>Proceedings of SPIE, 2017, , .                       | 0.8 | Ο         |
| 230 | Practical considerations for high speed real-time 3D measurements by the fringe projection.<br>Proceedings of SPIE, 2017, , .                     | 0.8 | 0         |
| 231 | A positional misalignment correction method for Fourier ptychographic microscopy based on simulated annealing. , 2017, , .                        |     | О         |
| 232 | The importance of the boundary condition in the transport of intensity equation based phase measurement. , 2017, , .                              |     | 0         |
| 233 | Three-dimensional measurement based on a Greenough-type stereomicroscope using phase-shifting projection. Proceedings of SPIE, 2017, , .          | 0.8 | 0         |
| 234 | Multi-view phase unwrapping with composite fringe patterns. Proceedings of SPIE, 2017, , .                                                        | 0.8 | 0         |

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | High speed 3D shape measurements with motion compensation. Proceedings of SPIE, 2017, , .                                                                                    | 0.8 | 0         |
| 236 | Phase retrieval in moir $	ilde{A}$ © volume computed tomography based on spatial phase shifting by triple-crossed gratings. Applied Optics, 2017, 56, 9341.                  | 1.8 | 0         |
| 237 | High-frequency enhanced based on high-resolution synthetic spectrum quantitative phase imaging. , 2021, , .                                                                  |     | 0         |
| 238 | Color deep learning profilometry for single-shot 3D shape measurement. , 2021, , .                                                                                           |     | 0         |
| 239 | An improved reliability-guided phase unwrapping algorithm for digital holographic microscopic. , 2021, , .                                                                   |     | 0         |
| 240 | Super-resolution lensless microscopy using multi-wavelength multiplexing. , 2021, , .                                                                                        |     | 0         |
| 241 | Super-resolution simulation of terahertz coded aperture imaging. , 2021, , .                                                                                                 |     | 0         |
| 242 | Accurate quantitative phase imaging by the transport of intensity equation: a mixed-transfer-function approach: erratum. Optics Letters, 2021, 46, 2408.                     | 3.3 | 0         |
| 243 | Structured-light 3D shape measurements using deep learning. , 2021, , .                                                                                                      |     | 0         |
| 244 | Corrigendum to "Transport of intensity equation: A tutorial―Optics and Lasers in Engineering,<br>Volume 135 (2020) 106187. Optics and Lasers in Engineering, 2021, , 106672. | 3.8 | 0         |
| 245 | Editorial: Optical Microscopic and Spectroscopic Techniques Targeting Biological Applications.<br>Frontiers in Physics, 2021, 9, .                                           | 2.1 | 0         |
| 246 | End-to-end single-shot composite fringe projection profilometry based on deep learning. , 2021, , .                                                                          |     | 0         |
| 247 | Phase space retrieval by iterative three-dimensional intensity projections. , 2021, , .                                                                                      |     | 0         |
| 248 | Quantitative phase imaging with mixed-transfer-function for resolution enhancement. , 2021, , .                                                                              |     | 0         |
| 249 | Super-resolution algorithm for lensless microscope based on z-axis correction. , 2021, , .                                                                                   |     | 0         |
| 250 | Nonuniformity Correction Based on Unified Photoresponse Characteristics of Infrared Focal Plane<br>Arrays. Guangzi Xuebao/Acta Photonica Sinica, 2011, 40, 926-932.          | 0.3 | 0         |
| 251 | Laplacian reconstruction of one single hologram using two dif ferent reconstruction distances or wavelengths. Chinese Optics Letters, 2012, 10, S10901-310904.               | 2.9 | 0         |
| 252 | High dynamic range three-dimensional measurement using fringe projection technique. , 2014, , .                                                                              |     | 0         |

| #   | Article                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Theory and Systematic Design of Rheinberg Illumination Microscopy Based on Programmable LCD.<br>Guangxue Xuebao/Acta Optica Sinica, 2016, 36, 0818002.   | 1.2 | 0         |
| 254 | Transmission Stereo Microscope Based on Programmable LED Array Illumination. Guangxue<br>Xuebao/Acta Optica Sinica, 2016, 36, 0511005.                   | 1.2 | 0         |
| 255 | Lensless Imaging Method for Pinhole Type Point Diffraction Interferometer. Guangxue Xuebao/Acta<br>Optica Sinica, 2017, 37, 0312002.                     | 1.2 | Ο         |
| 256 | Multimodal quantitative phase and fluorescence imaging of cell apoptosis. , 2017, , .                                                                    |     | 0         |
| 257 | Improved bi-frequency scheme to realize high-precision 3D shape measurement. , 2017, , .                                                                 |     | Ο         |
| 258 | Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe. , 2017, , .                                            |     | 0         |
| 259 | Pixel-resolution and image quality improvement in lensfree holographic microscopy using adaptive relaxation and positional error correction. , 2017, , . |     | Ο         |
| 260 | An efficient iterative super-resolution technology for coded aperture imaging. , 2017, , .                                                               |     | 0         |
| 261 | Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array. , 2017, , .                    |     | 0         |
| 262 | Fast 3D shape measurements with reduced motion artifacts. , 2017, , .                                                                                    |     | 0         |
| 263 | Resolution-improved Fourier ptychographic microscopy using high-numerical-aperture condenser. , 2017, , .                                                |     | 0         |
| 264 | Pixel-super-resolved lensfree holography using adaptive relaxation factor and positional error correction. , 2018, , .                                   |     | 0         |
| 265 | Robust stereo phase unwrapping based on a quad-camera system. , 2018, , .                                                                                |     | 0         |
| 266 | Motion-compensated three-step phase-shifting profilometry. , 2018, , .                                                                                   |     | 0         |
| 267 | Effcient quantitative phase imaging for programmable LED light microscopy. , 2018, , .                                                                   |     | 0         |
| 268 | The dynamic super-resolution phase imaging based on low-cost lensfree system. , 2018, , .                                                                |     | 0         |
| 269 | High-speed three-dimensional shape measurement using improved bi-frequency scheme and number-theoretical phase unwrapping. , 2018, , .                   |     | Ο         |
| 270 | Adaptive denoising method based on iterative process for Fourier ptychographic microscopy. , 2018, , .                                                   |     | 0         |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | High-speed 3D shape measurement using composite structured-light patterns and multiview system. , 2018, , .                                                                                                               |     | 0         |
| 272 | 3D imaging based on depth measurement. Hongwai Yu Jiguang Gongcheng/Infrared and Laser<br>Engineering, 2019, 48, 603013.                                                                                                  | 0.4 | 0         |
| 273 | Review of the development and application of deformation measurement based on digital holography<br>and digital speckle interferometry. Hongwai Yu Jiguang Gongcheng/Infrared and Laser Engineering,<br>2019, 48, 603010. | 0.4 | 0         |
| 274 | Fast Stereo 3D Imaging Based on Random Speckle Projection and Its FPGA Implementation. Lecture Notes in Computer Science, 2019, , 205-216.                                                                                | 1.3 | 0         |
| 275 | Robust Dynamic 3D Shape Measurement with Hybrid Fourier-Transform Phase-Shifting Profilometry.<br>Lecture Notes in Computer Science, 2019, , 122-133.                                                                     | 1.3 | 0         |
| 276 | Real-time 3D point cloud registration. , 2019, , .                                                                                                                                                                        |     | 0         |
| 277 | High dynamic range and fast 3D measurement based on a telecentric stereo-microscopic system. , 2019, ,                                                                                                                    |     | 0         |
| 278 | High-speed three-dimensional shape measurement based on robust Gray-code coding strategies. , 2019, ,                                                                                                                     |     | 0         |
| 279 | Full-surface 3-D reconstruction based on surround structured lighting. , 2019, , .                                                                                                                                        |     | 0         |
| 280 | Speckle quantitative phase imaging based on coherence eï $\neg \in$ ect compensation. , 2019, , .                                                                                                                         |     | 0         |
| 281 | Improved multi-slice Fourier ptychographic microscopy technique for high-accuracy three-dimensional tomography under oblique illuminations. , 2019, , .                                                                   |     | 0         |
| 282 | Fast panoramic 3D shape measurement using the multi-view system with plane mirrors. , 2019, , .                                                                                                                           |     | 0         |
| 283 | Isotropic quantitative phase imaging with optimal differential phase contrast illumination scheme. , 2019, , .                                                                                                            |     | 0         |
| 284 | Temporal phase unwrapping using multi-scale deep neural networks. , 2019, , .                                                                                                                                             |     | 0         |
| 285 | Quantitative phase microscopy based on color-multiplexed single-shot Fourier ptychography. , 2019, , .                                                                                                                    |     | 0         |
| 286 | Single-shot 3D shape measurement with spatial frequency multiplexing using deep learning. , 2019, , .                                                                                                                     |     | 0         |
| 287 | Microscopic fringe projection profilometry comparison based on stereoscopic microscope and telecentric lenses. , 2019, , .                                                                                                |     | 0         |
| 288 | 10.1063/1.5124535.1., 2019,,.                                                                                                                                                                                             |     | 0         |

| #   | Article                                                                                                                                                            | IF | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 289 | Low-light-level image pixel super-resolution reconstruction method. , 2021, , .                                                                                    |    | Ο         |
| 290 | Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography. , 2021, , .                                                  |    | 0         |
| 291 | Deep learning-based single-shot spatial frequency multiplexing composite fringe projection profilometry. , 2021, , .                                               |    | 0         |
| 292 | High-accuracy real-time omnidirectional 3D scanning and inspection system. , 2021, , .                                                                             |    | 0         |
| 293 | Calibration method for monocular 3D imaging systems based on reference planes. , 2021, , .                                                                         |    | 0         |
| 294 | Fast and high-precision 3D face scanning system based on infrared fringe projection. , 2021, , .                                                                   |    | 0         |
| 295 | Wide field coded aperture super resolution imaging. , 2021, , .                                                                                                    |    | 0         |
| 296 | Speckle quantitative phase imaging camera based on the transport of intensity equation. , 2019, , .                                                                |    | 0         |
| 297 | Computational microscopy for quantitative phase imaging and refractive index tomography using annular illumination. , 2020, , .                                    |    | 0         |
| 298 | Fast 3D measurement method based on improved digital image correlation using grid-based feature extraction. , 2021, , .                                            |    | 0         |
| 299 | Optimizing design of partially coherent illumination for refractive index tomographic microscopy. , 2021, , .                                                      |    | 0         |
| 300 | Transport of intensity equation: noninterferometic phase imaging and diffraction tomography. , 2021, ,                                                             |    | 0         |
| 301 | Single-shot, 360-degree, and high-precision three- dimensional shape measurement for human heads based on digital image correlation and plane mirrors. , 2021, , . |    | 0         |
| 302 | Label-free quantitative 3D intensity diffraction tomographic imaging in high numerical aperture microscopy. , 2020, , .                                            |    | 0         |
| 303 | Fast 3D surface defect detection with fringe projection. , 2020, , .                                                                                               |    | 0         |
| 304 | Stereo phase unwrapping method based on feedback projection. , 2020, , .                                                                                           |    | 0         |
| 305 | Optimization method for the synthetic apertures imaging system. , 2020, , .                                                                                        |    | 0         |
| 306 | Phase space retrieval and the imaging system effect. , 2020, , .                                                                                                   |    | 0         |

| #   | Article                                                                                                                       | IF | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 307 | Coherence eï¬ $\in$ ect compensation in diï¬ $\in$ user-based quantitative phase imaging. , 2020, , .                         |    | Ο         |
| 308 | Anti-aliasing high resolution quantitative phase microscopy based on differential phase contrast<br>imaging. , 2020, , .      |    | 0         |
| 309 | Holographic lensless quantitative phase imaging microscope. , 2020, , .                                                       |    | 0         |
| 310 | Robust absolute 3D measurement using stereo cost-volume filtering for fringe orders. , 2020, , .                              |    | 0         |
| 311 | Miniaturized multi-contrast quantitative phase imaging microscope. , 2020, , .                                                |    | Ο         |
| 312 | Resolution-enhanced quantitative phase imaging from transport of intensity equation: mixed-transfer-function. , 2021, , .     |    | 0         |
| 313 | Low-light-level image super-resolution reconstruction via deep learning network. , 2021, , .                                  |    | Ο         |
| 314 | Stereo rectification of Scheimpflug telecentric lenses. , 2021, , .                                                           |    | 0         |
| 315 | Coherence retrieval via three-dimensional intensity measurement. , 2021, , .                                                  |    | 0         |
| 316 | Stereo phase unwrapping using deep learning for single-shot absolute 3D shape measurement. , 2021, , .                        |    | 0         |
| 317 | Learning-based 3D shape measurements with fringe projection. , 2020, , .                                                      |    | 0         |
| 318 | Deep-learning-enabled fringe projection profilometry. , 2020, , .                                                             |    | 0         |
| 319 | Pixel-super-resolution lensfree microscopy based on multiple-wavelength scanning. , 2020, , .                                 |    | Ο         |
| 320 | Wigner distribution function retrieval via three-dimensional intensity measurement. , 2020, , .                               |    | 0         |
| 321 | Learning-based absolute 3D shape measurement based on single fringe phase retrieval and speckle correlation. , 2020, , .      |    | Ο         |
| 322 | Super resolution imaging method based on the synthetic aperture system. , 2020, , .                                           |    | 0         |
| 323 | 3D resolution-enhanced intensity diffraction tomographic microscopy. , 2020, , .                                              |    | 0         |
| 324 | Improved multi-slice Fourier ptychographic diffraction tomography based on high-numerical-aperture illuminations. , 2020, , . |    | 0         |

| #   | Article                                                                                                | IF | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------|----|-----------|
| 325 | Transport of intensity diffraction tomography with non-interferometric synthetic aperture. , 2022, , . |    | О         |
| 326 | Accelerated Fourier ptychographic diffraction tomography based on coded illumination. , 2022, , .      |    | 0         |