Stacey J Sukoff Rizzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3094756/publications.pdf

Version: 2024-02-01

56 papers

2,722 citations

218677 26 h-index 189892 50 g-index

63 all docs

63
docs citations

63 times ranked

4455 citing authors

#	Article	IF	CITATIONS
1	Emerging Electroencephalographic Biomarkers to Improve Preclinical to Clinical Translation in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 805063.	3.4	2
2	Perspectives on Cognitive Phenotypes and Models of Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317395.	2.4	4
3	Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study. Frontiers in Aging Neuroscience, 2021, 13, 713726.	3.4	133
4	Uncovering Disease Mechanisms in a Novel Mouse Model Expressing Humanized APOEε4 and Trem2*R47H. Frontiers in Aging Neuroscience, 2021, 13, 735524.	3.4	29
5	Establishing the marmoset as a nonâ€human primate model of Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, e049952.	0.8	2
6	Creating, characterizing, and validating the next generation of mouse models for lateâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, e049954.	0.8	0
7	LOAD2: A lateâ€onset Alzheimer's disease mouse model expressing <i>APOEÎμ4</i> , <i>Trem2*R47H</i> , and humanized amyloidâ€beta. Alzheimer's and Dementia, 2021, 17, e056017.	d _{0.8}	2
8	Lost in translation: At the crossroads of face validity and translational utility of behavioral assays in animal models for the development of therapeutics. Neuroscience and Biobehavioral Reviews, 2020, 116, 452-453.	6.1	26
9	Integrated analysis of the molecular pathogenesis of FDXR-associated disease. Cell Death and Disease, 2020, 11, 423.	6.3	21
10	Improving preclinical to clinical translation in Alzheimer's disease research. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12038.	3.7	20
11	Characterization of PF-6142, a Novel, Non-Catecholamine Dopamine Receptor D1 Agonist, in Murine and Nonhuman Primate Models of Dopaminergic Activation. Frontiers in Pharmacology, 2020, 11, 1005.	3.5	18
12	The Importance of Complementary Collaboration of Researchers, Veterinarians, and Husbandry Staff in the Successful Training of Marmoset Behavioral Assays. ILAR Journal, 2020, 61, 230-247.	1.8	5
13	Translational animal models for Alzheimer's disease: An Alzheimer's Association Business Consortium Think Tank. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12114.	3.7	49
14	Acarbose improves health and lifespan in aging HET3 mice. Aging Cell, 2019, 18, e12898.	6.7	90
15	Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Translational Psychiatry, 2019, 9, 151.	4.8	127
16	Enhancing face validity of mouse models of Alzheimer's disease with natural genetic variation. PLoS Genetics, 2019, 15, e1008155.	3.5	68
17	Exercise prevents obesity-induced cognitive decline and white matter damage in mice. Neurobiology of Aging, 2019, 80, 154-172.	3.1	40
18	Functional rescue in a mouse model of congenital muscular dystrophy with megaconial myopathy. Human Molecular Genetics, 2019, 28, 2635-2647.	2.9	9

#	Article	IF	CITATIONS
19	Genetic Background and Sex: Impact on Generalizability of Research Findings in Pharmacology Studies. Handbook of Experimental Pharmacology, 2019, 257, 147-162.	1.8	8
20	P4â€031: NOVEL MODELS OF LATEâ€ONSET ALZHEIMER'S DISEASE BASED ON GWAS. Alzheimer's and Dementia 2018, 14, P1445.	³ ,0.8	1
21	P4â€028: CHARACTERIZING THE APOE4/TREM2*R47H MOUSE MODEL FOR LATE ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1444.	0.8	0
22	P1â€131: MODELâ€AD: LATEâ€ONSET ALZHEIMER'S DISEASE MODELS. Alzheimer's and Dementia, 2018, 14, P32	2 lo.8	0
23	P1â€130: MODELâ€AD: CHARACTERIZATION OF FAMILIAL AD MODELS (5XFAD, APP/PS1, HTAU, 3XTGâ€AD). Alzheimer's and Dementia, 2018, 14, P321.	0.8	1
24	O1â€01â€03: GENETICALLY DIVERSE MOUSE MODELS OF ALZHEIMER'S DISEASE EXHIBIT DIFFERENTIAL MYELOII CELL RESPONSE AND NEURODEGENERATION. Alzheimer's and Dementia, 2018, 14, P212.	D _{0.8}	0
25	Assessing Healthspan and Lifespan Measures in Aging Mice: Optimization of Testing Protocols, Replicability, and Rater Reliability. Current Protocols in Mouse Biology, 2018, 8, e45.	1.2	54
26	Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders. Annual Review of Animal Biosciences, 2017, 5, 371-389.	7.4	46
27	Continuous Glucose Monitoring in Female NOD Mice Reveals Daily Rhythms and a Negative Correlation With Body Temperature. Endocrinology, 2017, 158, 2707-2712.	2.8	9
28	Biallelic mutations in the ferredoxin reductase gene cause novel mitochondriopathy with optic atrophy. Human Molecular Genetics, 2017, 26, 4937-4950.	2.9	32
29	Methodological Considerations for Optimizing and Validating Behavioral Assays. Current Protocols in Mouse Biology, 2016, 6, 364-379.	1.2	42
30	Biallelic Mutations in PDE10A Lead to Loss of Striatal PDE10A and a Hyperkinetic Movement Disorder with Onset in Infancy. American Journal of Human Genetics, 2016, 98, 735-743.	6.2	65
31	Repetitive Behavioral Assessments for Compound Screening in Mouse Models of Autism Spectrum Disorders. Methods in Molecular Biology, 2016, 1438, 293-310.	0.9	6
32	Toward more predictive genetic mouse models of Alzheimer's disease. Brain Research Bulletin, 2016, 122, 1-11.	3.0	140
33	Analysis of sleep traits in knockout mice from the large-scale KOMP2 population using a non-invasive, high-throughput piezoelectric system. BMC Bioinformatics, 2015, 16, P15.	2.6	4
34	Independent Neuronal Origin of Seizures and Behavioral Comorbidities in an Animal Model of a Severe Childhood Genetic Epileptic Encephalopathy. PLoS Genetics, 2015, 11, e1005347.	3.5	31
35	Behavioral characterization of striatalâ€enriched protein tyrosine phosphatase (<scp>STEP</scp>) knockout mice. Genes, Brain and Behavior, 2014, 13, 643-652.	2.2	9
36	Alternative method of oral administration by peanut butter pellet formulation results in target engagement of BACE1 and attenuation of gavage-induced stress responses in mice. Pharmacology Biochemistry and Behavior, 2014, 126, 28-35.	2.9	40

#	Article	IF	CITATIONS
37	Future Viable Models of Psychiatry Drug Discovery in Pharma. Journal of Biomolecular Screening, 2013, 18, 509-521.	2.6	14
38	Negative allosteric modulation of metabotropic glutamate receptor 5 results in broad spectrum activity relevant to treatment resistant depression. Neuropharmacology, 2013, 66, 202-214.	4.1	71
39	Behavioral Characterization of A53T Mice Reveals Early and Late Stage Deficits Related to Parkinson's Disease. PLoS ONE, 2013, 8, e70274.	2.5	141
40	Negative Allosteric Modulation of the mGluR5 Receptor Reduces Repetitive Behaviors and Rescues Social Deficits in Mouse Models of Autism. Science Translational Medicine, 2012, 4, 131ra51.	12.4	238
41	Evidence for sustained elevation of IL-6 in the CNS as a key contributor of depressive-like phenotypes. Translational Psychiatry, 2012, 2, e199-e199.	4.8	189
42	3-(Pyridin-2-yl-ethynyl)benzamide metabotropic glutamate receptor 5 negative allosteric modulators: Hit to lead studies. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 195-199.	2.2	4
43	The Metabotropic Glutamate Receptor 7 Allosteric Modulator AMN082: A Monoaminergic Agent in Disguise?. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 345-352.	2.5	96
44	Preclinical characterization of BRL 44408: antidepressant- and analgesic-like activity through selective $\hat{l}\pm 2$ A-adrenoceptor antagonism. International Journal of Neuropsychopharmacology, 2010, 13, 1193-1205.	2.1	23
45	The Synthesis and Biological Evaluation of Quinolyl-piperazinyl Piperidines as Potent Serotonin 5-HT _{1A} Antagonists. Journal of Medicinal Chemistry, 2010, 53, 4066-4084.	6.4	14
46	Receptor and behavioral pharmacology of WAY-267464, a non-peptide oxytocin receptor agonist. Neuropharmacology, 2010, 58, 69-77.	4.1	135
47	Phosphodiesterase 11A in brain is enriched in ventral hippocampus and deletion causes psychiatric disease-related phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8457-8462.	7.1	78
48	Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. Psychopharmacology, 2009, 203, 41-52.	3.1	49
49	5-HT1A receptor antagonism reverses and prevents fluoxetine-induced sexual dysfunction in rats. International Journal of Neuropsychopharmacology, 2009, 12, 1045.	2.1	19
50	Pharmacology of neuropeptide S in mice: therapeutic relevance to anxiety disorders. Psychopharmacology, 2008, 197, 601-611.	3.1	129
51	Correlating Efficacy in Rodent Cognition Models with in Vivo 5-Hydroxytryptamine _{1A} Receptor Occupancy by a Novel Antagonist, (<i>R</i>)- <i>N</i> -(2-Methyl-(4-indolyl-1-piperazinyl)ethyl)- <i>N</i> Carboxamide (WAY-101405), Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 134-145,	2.5	37
52	Increasing the Levels of Insulin-Like Growth Factor-I by an IGF Binding Protein Inhibitor Produces Anxiolytic and Antidepressant-Like Effects. Neuropsychopharmacology, 2007, 32, 2360-2368.	5.4	88
53	Antidepressant-like effects of the novel, selective, 5-HT2C receptor agonist WAY-163909 in rodents. Psychopharmacology, 2007, 192, 159-170.	3.1	92
54	A novel approach for predicting antidepressant-induced sexual dysfunction in rats. Psychopharmacology, 2007, 195, 459-467.	3.1	17

#	Article	IF	CITATIONS
55	Anxiolytic-like activity of the mGluR5 antagonist MPEPA comparison with diazepam and buspirone. Pharmacology Biochemistry and Behavior, 2002, 73, 359-366.	2.9	143
56	COMPARISON OF THE 5-HT2C ANTAGONIST PROPERTIES OF THE 5-HT2C/2B ANTAGONIST SB 206553 AND RS-102221 IN RATS. Behavioural Pharmacology, 1999, 10, S90.	1.7	0