
James J Elser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3094486/publications.pdf Version: 2024-02-01

IAMES | FISED

#	Article	IF	CITATIONS
1	Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 2007, 10, 1135-1142.	6.4	3,460
2	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
3	The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 2000, 290, 291-296.	12.6	1,601
4	Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408, 578-580.	27.8	1,264
5	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
6	Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3, 540-550.	6.4	867
7	Organism Size, Life History, and N:P Stoichiometry. BioScience, 1996, 46, 674-684.	4.9	837
8	Regulation of Lake Primary Productivity by Food Web Structure. Ecology, 1987, 68, 1863-1876.	3.2	762
9	Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 2003, 6, 936-943.	6.4	758
10	Nutrient coâ€limitation of primary producer communities. Ecology Letters, 2011, 14, 852-862.	6.4	747
11	Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 2010, 186, 593-608.	7.3	741
12	A broken biogeochemical cycle. Nature, 2011, 478, 29-31.	27.8	734
13	Ecological Stoichiometry. , 2003, , .		687
14	Shifts in Lake N:P Stoichiometry and Nutrient Limitation Driven by Atmospheric Nitrogen Deposition. Science, 2009, 326, 835-837.	12.6	655
15	Beyond the Plankton Ecology Group (PEG) Model: Mechanisms Driving Plankton Succession. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 429-448.	8.3	604
16	Phosphorus and Nitrogen Limitation of Phytoplankton Growth in the Freshwaters of North America: A Review and Critique of Experimental Enrichments. Canadian Journal of Fisheries and Aquatic Sciences, 1990, 47, 1468-1477.	1.4	576
17	THE STOICHIOMETRY OF CONSUMER-DRIVEN NUTRIENT RECYCLING: THEORY, OBSERVATIONS, AND CONSEQUENCES. Ecology, 1999, 80, 735-751.	3.2	523
18	CARBON SEQUESTRATION IN ECOSYSTEMS: THE ROLE OF STOICHIOMETRY. Ecology, 2004, 85, 1179-1192.	3.2	476

#	Article	IF	CITATIONS
19	The Light: Nutrient Ratio in Lakes: The Balance of Energy and Materials Affects Ecosystem Structure and Process. American Naturalist, 1997, 150, 663-684.	2.1	415
20	Sustainability Challenges of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle. BioScience, 2011, 61, 117-124.	4.9	412
21	Phylogenetic and Growth Form Variation in the Scaling of Nitrogen and Phosphorus in the Seed Plants. American Naturalist, 2006, 168, E103-E122.	2.1	383
22	Nitrogen in Insects: Implications for Trophic Complexity and Species Diversification. American Naturalist, 2002, 160, 784-802.	2.1	358
23	A crossâ€system synthesis of consumer and nutrient resource control on producer biomass. Ecology Letters, 2008, 11, 740-755.	6.4	334
24	Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10904-10909.	7.1	302
25	Zooplanktonâ€mediated transitions between N―and Pâ€limited algal growth1. Limnology and Oceanography, 1988, 33, 1-14.	3.1	294
26	Metabolic Stoichiometry and the Fate of Excess Carbon and Nutrients in Consumers. American Naturalist, 2005, 165, 1-15.	2.1	287
27	Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9, 353-356.	12.9	282
28	Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 2010, 13, 1390-1399.	6.4	271
29	Stoichiometric relationships among producers, consumers and nutrient cycling in pelagic ecosystems. Biogeochemistry, 1992, 17, 49.	3.5	266
30	Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 2005, 14, 585-598.	5.8	259
31	Phosphorus: a limiting nutrient for humanity?. Current Opinion in Biotechnology, 2012, 23, 833-838.	6.6	259
32	Plankton dynamics under different climatic conditions in space and time. Freshwater Biology, 2013, 58, 463-482.	2.4	259
33	Ecological stoichiometry: An elementary approach using basic principles. Limnology and Oceanography, 2013, 58, 2219-2236.	3.1	251
34	Water Depth Underpins the Relative Roles and Fates of Nitrogen and Phosphorus in Lakes. Environmental Science & Technology, 2020, 54, 3191-3198.	10.0	247
35	A stoichiometric analysis of the zooplankton–phytoplankton interaction in marine and freshwater ecosystems. Nature, 1994, 370, 211-213.	27.8	246
36	Scaleâ€dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnology and Oceanography, 2008, 53, 1169-1180.	3.1	238

#	Article	IF	CITATIONS
37	The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and Biogeography, 2012, 21, 798-808.	5.8	235
38	Temperature and the chemical composition of poikilothermic organisms. Functional Ecology, 2003, 17, 237-245.	3.6	221
39	Stoichiometry and population dynamics. Ecology Letters, 2004, 7, 884-900.	6.4	221
40	FUNDAMENTAL CONNECTIONS AMONG ORGANISM C:N:P STOICHIOMETRY, MACROMOLECULAR COMPOSITION, AND GROWTH. Ecology, 2004, 85, 1217-1229.	3.2	218
41	TOO MUCH OF A GOOD THING: ON STOICHIOMETRICALLY BALANCED DIETS AND MAXIMAL GROWTH. Ecology, 2006, 87, 1325-1330.	3.2	218
42	Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters, 2002, 5, 232-240.	6.4	217
43	Stoichiometry in Producer–Grazer Systems: Linking Energy Flow with Element Cycling. Bulletin of Mathematical Biology, 2000, 62, 1137-1162.	1.9	206
44	Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecology Letters, 2003, 6, 96-101.	6.4	200
45	Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River – From inland to the sea. Science of the Total Environment, 2019, 659, 66-73.	8.0	200
46	NUTRIENT LIMITATION REDUCES FOOD QUALITY FOR ZOOPLANKTON:DAPHNIARESPONSE TO SESTON PHOSPHORUS ENRICHMENT. Ecology, 2001, 82, 898-903.	3.2	197
47	An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6565-6570.	7.1	197
48	Intensification of phosphorus cycling in China since the 1600s. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2609-2614.	7.1	191
49	Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnology and Oceanography, 1991, 36, 64-90.	3.1	185
50	Heavy Livestock Grazing Promotes Locust Outbreaks by Lowering Plant Nitrogen Content. Science, 2012, 335, 467-469.	12.6	180
51	The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 2011, 14, 244-250.	6.4	172
52	Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Global Change Biology, 2009, 15, 2730-2738.	9.5	171
53	Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 2011, 166, 1-10.	2.0	171
54	Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability. Green Chemistry, 2015, 17, 2087-2099.	9.0	170

#	Article	IF	CITATIONS
55	Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	168
56	N : P stoichiometry and ontogeny of crustacean zooplankton: A test of the growth rate hypothesis. Limnology and Oceanography, 1997, 42, 1474-1478.	3.1	166
57	Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 877-883.	2.6	163
58	Sustainable Phosphorus Management and the Need for a Long-Term Perspective: The Legacy Hypothesis. Environmental Science & Technology, 2014, 48, 8417-8419.	10.0	161
59	Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Functional Ecology, 2015, 29, 26-34.	3.6	160
60	The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. Journal of Evolutionary Biology, 2000, 13, 845-853.	1.7	152
61	The metabolic basis of whole-organism RNA and phosphorus content. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11923-11927.	7.1	151
62	Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology, 2009, 90, 3062-3073.	3.2	149
63	ROSEMARY MACKAY FUND ARTICLE: Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C:N:P ratios in lentic and lotic habitats. Journal of the North American Benthological Society, 2002, 21, 515-528.	3.1	148
64	Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecology Letters, 2009, 12, 516-527.	6.4	144
65	Stoichiometric regulation of phytoplankton toxins. Ecology Letters, 2014, 17, 736-742.	6.4	144
66	Pelagic C:N:P Stoichiometry in a Eutrophied Lake: Responses to a Whole-Lake Food-Web Manipulation. Ecosystems, 2000, 3, 293-307.	3.4	143
67	Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11566-11572.	7.1	141
68	The Functional Significance of Ribosomal (r)DNA Variation: Impacts on the Evolutionary Ecology of Organisms. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 219-242.	8.3	137
69	Chlorophyll production, degradation, and sedimentation: Implications for paleolimnology1. Limnology and Oceanography, 1986, 31, 112-124.	3.1	135
70	Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biology and Biochemistry, 2014, 75, 113-123.	8.8	135
71	Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil. Soil Biology and Biochemistry, 2015, 87, 34-42.	8.8	134
72	Accelerate Synthesis in Ecology and Environmental Sciences. BioScience, 2009, 59, 699-701.	4.9	132

#	Article	IF	CITATIONS
73	Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecology Letters, 2016, 19, 1237-1246.	6.4	129
74	Stoichiometric Constraints on Food-Web Dynamics: A Whole-Lake Experiment on the Canadian Shield. Ecosystems, 1998, 1, 120-136.	3.4	125
75	Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Global Change Biology, 2003, 9, 818-825.	9.5	123
76	Biological stoichiometry of <i>Daphnia</i> growth: An ecophysiological test of the growth rate hypothesis. Limnology and Oceanography, 2004, 49, 656-665.	3.1	122
77	Dietary phosphorus affects the growth of larvalManduca sexta. Archives of Insect Biochemistry and Physiology, 2004, 55, 153-168.	1.5	121
78	Ecological stoichiometry of N and P in pelagic ecosystems: Comparison of lakes and oceans with emphasis on the zooplankton-phytoplankton interaction. Limnology and Oceanography, 1997, 42, 648-662.	3.1	119
79	Competition and stoichiometry: coexistence of two predators on one prey. Theoretical Population Biology, 2004, 65, 1-15.	1.1	118
80	Biological Stoichiometry: A Chemical Bridge between Ecosystem Ecology and Evolutionary Biology. American Naturalist, 2006, 168, S25-S35.	2.1	117
81	Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshwater Biology, 2005, 50, 1808-1825.	2.4	116
82	The role of diet in phosphorus demand. Environmental Research Letters, 2012, 7, 044043.	5.2	114
83	Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1605-1616.	3.0	113
84	Signatures of nutrient limitation and coâ€limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions. Oikos, 2015, 124, 113-121.	2.7	109
85	Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative study. Aquatic Microbial Ecology, 1995, 9, 105-110.	1.8	108
86	Stoichiometry and the New Biology: The Future Is Now. PLoS Biology, 2007, 5, e181.	5.6	103
87	JOINT EFFECTS OF UV RADIATION AND PHOSPHORUS SUPPLY ON ALGAL GROWTH RATE AND ELEMENTAL COMPOSITION. Ecology, 2002, 83, 423-435.	3.2	100
88	Genetic Manipulation of a "Vacuolar―H+-PPase: From Salt Tolerance to Yield Enhancement under Phosphorus-Deficient Soils. Plant Physiology, 2012, 159, 3-11.	4.8	98
89	Stoichiometric food quality and herbivore dynamics. Ecology Letters, 2001, 4, 519-529.	6.4	93
90	The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwater Biology, 1999, 42, 537-543.	2.4	92

#	Article	IF	CITATIONS
91	Carbon:Nitrogen:Phosphorus Stoichiometry in Fungi: A Meta-Analysis. Frontiers in Microbiology, 2017, 8, 1281.	3.5	92
92	The phosphorusâ€rich signature of fire in the soil–plant system: a global metaâ€analysis. Ecology Letters, 2018, 21, 335-344.	6.4	91
93	Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes. Ecology, 2010, 91, 528-539.	3.2	89
94	Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of the Total Environment, 2020, 722, 137910.	8.0	88
95	Microbial endemism: does phosphorus limitation enhance speciation?. Nature Reviews Microbiology, 2008, 6, 559-564.	28.6	87
96	Functional and ecological significance of rDNA intergenic spacer variation in a clonal organism under divergent selection for production rate. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2373-2379.	2.6	86
97	A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere, 2011, 84, 840-845.	8.2	86
98	The Cuatro Ciénegas Basin in Coahuila, Mexico: An Astrobiological Precambrian Park. Astrobiology, 2012, 12, 641-647.	3.0	86
99	Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: Evidence from a long-term grassland experiment. Soil Biology and Biochemistry, 2019, 138, 107580.	8.8	86
100	Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. Ecology Letters, 2010, 13, 1256-1261.	6.4	83
101	Response of the Abundance of Key Soil Microbial Nitrogen-Cycling Genes to Multi-Factorial Global Changes. PLoS ONE, 2013, 8, e76500.	2.5	83
102	Herbivorous animals can mitigate unfavourable ratios of energy and material supplies by enhancing nutrient recycling. Ecology Letters, 2002, 5, 177-185.	6.4	82
103	Ingestion and egestion of polyethylene microplastics by goldfish (Carassius auratus): influence of color and morphological features. Heliyon, 2019, 5, e03063.	3.2	82
104	Effects of roots of Myriophyllum verticillatum L. on sediment redox conditions. Aquatic Botany, 1983, 17, 243-249.	1.6	79
105	Biological Stoichiometry in Human Cancer. PLoS ONE, 2007, 2, e1028.	2.5	79
106	RNA responses to N―and Pâ€limitation; reciprocal regulation of stoichiometry and growth rate in <i>Brachionus</i> . Functional Ecology, 2007, 21, 956-962.	3.6	79
107	Elemental stoichiometry of Drosophila and their hosts. Functional Ecology, 1999, 13, 78-84.	3.6	78
108	Stoichiogenomics: the evolutionary ecology of macromolecular elemental composition. Trends in Ecology and Evolution, 2011, 26, 38-44.	8.7	77

#	Article	IF	CITATIONS
109	Assessment of â€~top-down' and â€~bottom-up' forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecological Research, 2003, 18, 639-650.	⁵ 1.5	73
110	Taxonomic and Functional Differences between Microbial Communities in Qinghai Lake and Its Input Streams. Frontiers in Microbiology, 2017, 8, 2319.	3.5	73
111	Species-Dependent Effects of Zooplankton on Planktonic Ecosystem Processes in Castle Lake, California. Ecology, 1994, 75, 2243.	3.2	72
112	Ecological Nitrogen Limitation Shapes the DNA Composition of Plant Genomes. Molecular Biology and Evolution, 2009, 26, 953-956.	8.9	72
113	Early Cambrian food webs on a trophic knife-edge? A hypothesis and preliminary data from a modern stromatolite-based ecosystem. Ecology Letters, 2006, 9, 295-303.	6.4	71
114	The effect of hostChlorella NC64Acarbon : phosphorus ratio on the production ofParamecium bursaria Chlorella Virus-1. Freshwater Biology, 2007, 52, 112-122.	2.4	68
115	Elemental Composition of Littoral Invertebrates from Oligotrophic and Eutrophic Canadian Lakes. Journal of the North American Benthological Society, 2003, 22, 51-62.	3.1	65
116	Signatures of Ecological Resource Availability in the Animal and Plant Proteomes. Molecular Biology and Evolution, 2006, 23, 1946-1951.	8.9	65
117	Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity. Oecologia, 2007, 151, 687-696.	2.0	64
118	Element ratios and growth dynamics of bacteria in an oligotrophic Canadian shield lake. Aquatic Microbial Ecology, 1996, 11, 119-125.	1.8	63
119	Plant nutrients do not covary with soil nutrients under changing climatic conditions. Clobal Biogeochemical Cycles, 2015, 29, 1298-1308.	4.9	62
120	Nutrient Stoichiometry Shapes Microbial Community Structure in an Evaporitic Shallow Pond. Frontiers in Microbiology, 2017, 8, 949.	3.5	62
121	Elemental ratios and the uptake and release of nutrients by phytoplankton and bacteria in three lakes of the Canadian shield. Microbial Ecology, 1995, 29, 145-162.	2.8	61
122	Response of grazing snails to phosphorus enrichment of modern stromatolitic microbial communities. Freshwater Biology, 2005, 50, 1826-1835.	2.4	60
123	GenotypeÂ×Âenvironment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex. Oecologia, 2005, 143, 537-547.	2.0	60
124	Highâ€frequency fire alters CÂ:ÂNÂ:ÂP stoichiometry in forest litter. Global Change Biology, 2014, 20, 2321-2331.	9.5	60
125	How To Live with Phosphorus Scarcity in Soil and Sediment: Lessons from Bacteria. Applied and Environmental Microbiology, 2016, 82, 4652-4662.	3.1	60
126	Nutrient Limitation Reduces Food Quality for Zooplankton: Daphnia Response to Seston Phosphorus Enrichment. Ecology, 2001, 82, 898.	3.2	58

#	Article	IF	CITATIONS
127	Effects of plant functional group loss on soil biota and net ecosystem exchange: a plant removal experiment in the Mongolian grassland. Journal of Ecology, 2016, 104, 734-743.	4.0	58
128	Species-specific algal responses to zooplankton: experimental and field observations in three nutrient-limited lakes. Journal of Plankton Research, 1987, 9, 699-717.	1.8	57
129	Effects of light and nutrients on the net accumulation and elemental composition of epilithon in boreal lakes. Freshwater Biology, 2002, 47, 173-183.	2.4	57
130	Enrichment experiment changes microbial interactions in an ultra-oligotrophic environment. Frontiers in Microbiology, 2015, 6, 246.	3.5	57
131	Downâ€regulation of tissue N:P ratios in terrestrial plants by elevated CO ₂ . Ecology, 2015, 96, 3354-3362.	3.2	57
132	Impact of a Short Evolution Module on Students' Perceived Conflict between Religion and Evolution. American Biology Teacher, 2017, 79, 104-111.	0.2	57
133	On the "strict homeostasis―assumption in ecological stoichiometry. Ecological Modelling, 2012, 243, 81-88.	2.5	56
134	Effects of functional diversity loss on ecosystem functions are influenced by compensation. Ecology, 2016, 97, 2293-2302.	3.2	56
135	Predation-driven dynamics of zooplankton and phytoplankton communities in a whole-lake experiment. Oecologia, 1988, 76, 148-154.	2.0	55
136	Testing the Growth Rate Hypothesis in Vascular Plants with Above- and Below-Ground Biomass. PLoS ONE, 2012, 7, e32162.	2.5	55
137	Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth. Microbial Ecology, 1995, 29, 221-230.	2.8	54
138	Effects of Food Web Compensation After Manipulation of Rainbow Trout in an Oligotrophic Lake. Ecology, 1995, 76, 52-69.	3.2	51
139	Factors potentially preventing trophic cascades: Food quality, invertebrate predation, and their interaction. Limnology and Oceanography, 1998, 43, 339-347.	3.1	51
140	Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security. PLoS ONE, 2014, 9, e93998.	2.5	51
141	Life on the stoichiometric knife-edge: effects of high and low food C:P ratio on growth, feeding, and respiration in three Daphnia species. Inland Waters, 2016, 6, 136-146.	2.2	51
142	The impact of nitrogen enrichment on grassland ecosystem stability depends on nitrogen addition level. Science of the Total Environment, 2018, 618, 1529-1538.	8.0	51
143	Global biogeography of autotroph chemistry: is insolation a driving force?. Oikos, 2013, 122, 1121-1130.	2.7	50
144	Lotka re-loaded: Modeling trophic interactions under stoichiometric constraints. Ecological Modelling, 2012, 245, 3-11.	2.5	49

#	Article	IF	CITATIONS
145	A World Awash with Nitrogen. Science, 2011, 334, 1504-1505.	12.6	48
146	Absorption and storage of phosphorus by larval Manduca sexta. Journal of Insect Physiology, 2002, 48, 555-564.	2.0	46
147	Dynamics of Stoichiometric Bacteria-Algae Interactions in the Epilimnion. SIAM Journal on Applied Mathematics, 2007, 68, 503-522.	1.8	46
148	Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams. Global Change Biology, 2020, 26, 6644-6656.	9.5	46
149	Biogeochemical cycling of PCBs in lakes of variable trophic status: A paired-lake experiment. Limnology and Oceanography, 1999, 44, 889-902.	3.1	45
150	Living With Locusts: Connecting Soil Nitrogen, Locust Outbreaks, Livelihoods, and Livestock Markets. BioScience, 2015, 65, 551-558.	4.9	45
151	Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Scientific Reports, 2017, 7, 12668.	3.3	45
152	Extreme ecological stoichiometry of a bark beetle–fungus mutualism. Ecological Entomology, 2019, 44, 543-551.	2.2	45
153	Thermal stratification, nutrient dynamics, and phytoplankton productivity during the onset of spring phytoplankton growth in Lake Baikal, Russia. Hydrobiologia, 1996, 331, 9-24.	2.0	44
154	Associations among ribosomal (r)DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus Daphnia. Limnology and Oceanography, 2004, 49, 1417-1423.	3.1	44
155	Effects of stoichiometric dietary mixing on Daphnia growth and reproduction. Oecologia, 2004, 138, 333-340.	2.0	44
156	Phosphorus mitigation remains critical in water protection: A review and meta-analysis from one of China's most eutrophicated lakes. Science of the Total Environment, 2019, 689, 1336-1347.	8.0	44
157	Greenhouse gas dynamics in lakes receiving atmospheric nitrogen deposition. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	43
158	Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes. Limnology and Oceanography, 2013, 58, 1165-1175.	3.1	42
159	Nutrient Availability for Phytoplankton Production in a Multiple-Impoundment Series. Canadian Journal of Fisheries and Aquatic Sciences, 1985, 42, 1359-1370.	1.4	39
160	Sources of nitrogen and phosphorus supporting the growth of bacteria and phytoplankton in an oligotrophic Canadian shield lake. Limnology and Oceanography, 1995, 40, 242-249.	3.1	39
161	Ecological stoichiometry: from sea to lake to land. Trends in Ecology and Evolution, 2000, 15, 393-394.	8.7	39
162	Molybdenum—nitrogen coâ€limitation in freshwater and coastal heterocystous cyanobacteria. Limnology and Oceanography, 2010, 55, 667-676.	3.1	38

#	Article	IF	CITATIONS
163	Stoichiometric Plant-Herbivore Models and Their Interpretation. Mathematical Biosciences and Engineering, 2004, 1, 215-222.	1.9	37
164	Size fractionation of algal chlorophyll, carbon fixation and phosphatase activity: relationships with species-specific size distributions and zooplankton community structure. Journal of Plankton Research, 1986, 8, 365-383.	1.8	36
165	Effects of Caddisfly Grazers on the Elemental Composition of Epilithon in a Boreal Lake. Journal of the North American Benthological Society, 2002, 21, 54-63.	3.1	36
166	Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila. Functional Ecology, 2006, 20, 846-856.	3.6	36
167	Biological stoichiometry of growth in Drosophila melanogaster. Journal of Insect Physiology, 2006, 52, 187-193.	2.0	36
168	Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2605-2610.	2.6	36
169	Editorial: Progress in Ecological Stoichiometry. Frontiers in Microbiology, 2018, 9, 1957.	3.5	36
170	Molybdenum-nitrogen co-limitation in freshwater and coastal heterocystous cyanobacteria. Limnology and Oceanography, 2010, 55, 667-676.	3.1	36
171	Phytoplankton Dynamics and the Role of Grazers in Castle Lake, California. Ecology, 1992, 73, 887-902.	3.2	35
172	Effects of zooplankton on sedimentation in pelagic ecosystems: Theory and test in two lakes of the Canadian shield. Biogeochemistry, 1995, 30, 143-170.	3.5	35
173	Community Structure and Biogeochemical Impacts of Microbial Life on Floating Pumice. Applied and Environmental Microbiology, 2015, 81, 1542-1549.	3.1	35
174	Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem. Frontiers in Microbiology, 2015, 6, 1486.	3.5	35
175	The stoichiometric legacy of fire regime regulates the roles of microâ€organisms and invertebrates in decomposition. Ecology, 2019, 100, e02732.	3.2	35
176	Factors associated with interannual and intraannual variation in nutrient limitation of phytoplankton growth in Castle Lake, California. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52, 93-104.	1.4	34
177	Signalling and phosphorus: correlations between mate signalling effort and body elemental composition in crickets. Animal Behaviour, 2006, 72, 899-907.	1.9	34
178	Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna. Oecologia, 2011, 165, 837-846.	2.0	34
179	Eco-Evolutionary Dynamics of Ecological Stoichiometry in Plankton Communities. American Naturalist, 2018, 192, E1-E20.	2.1	34
180	Seasonal algal blooms support sediment release of phosphorus via positive feedback in a eutrophic lake: Insights from a nutrient flux tracking modeling. Ecological Modelling, 2020, 416, 108881.	2.5	34

#	Article	IF	CITATIONS
181	Alteration of phytoplankton phosphorus status during enrichment experiments: implications for interpreting nutrient enrichment bioassay results. Hydrobiologia, 1986, 133, 217-222.	2.0	33
182	Elemental stoichiometry of lower food web components in arctic and temperate lakes. Journal of Plankton Research, 2000, 22, 1341-1354.	1.8	33
183	Biological Stoichiometry: An Ecological Perspective on Tumor Dynamics. BioScience, 2003, 53, 1112.	4.9	33
184	Effects of rainfall manipulations on carbon exchange of cyanobacteria and moss-dominated biological soil crusts. Soil Biology and Biochemistry, 2018, 124, 24-31.	8.8	33
185	The stoichiometry of N and P in the pelagic zone of Castle Lake, California. Journal of Plankton Research, 1993, 15, 977-992.	1.8	32
186	Do phosphorus requirements for RNA limit genome size in crustacean zooplankton?. Genome, 2008, 51, 685-691.	2.0	32
187	Rapid top–down regulation of plant C:N:P stoichiometry by grasshoppers in an Inner Mongolia grassland ecosystem. Oecologia, 2011, 166, 253-264.	2.0	32
188	Evidence of phosphorus-limited individual and population growth of Daphnia in a Canadian Shield lake. Oikos, 2002, 96, 197-205.	2.7	31
189	Diet composition affects the rate and N:P ratio of fish excretion. Freshwater Biology, 2015, 60, 456-465.	2.4	31
190	Microconsumer grazing and sources of limiting nutrients for phytoplankton growth: Application and complications of a nutrientâ€depletion/dilutionâ€gradient technique. Limnology and Oceanography, 1995, 40, 1-16.	3.1	30
191	Are color or high rearing density related to migratory polyphenism in the band-winged grasshopper, Oedaleus asiaticus?. Journal of Insect Physiology, 2010, 56, 926-936.	2.0	30
192	Travel, Sex, and Food: What's Speciation Got to Do with It?. Astrobiology, 2012, 12, 634-640.	3.0	30
193	Response of a Stoichiometrically Imbalanced Ecosystem to Manipulation of Nutrient Supplies and Ratios. PLoS ONE, 2015, 10, e0123949.	2.5	30
194	Testing biodiversity-ecosystem functioning relationship in the world's largest grassland: overview of the IMGRE project. Landscape Ecology, 2015, 30, 1723-1736.	4.2	30
195	Nutritional imbalance suppresses migratory phenotypes of the Mongolian locust (<i>Oedaleus) Tj ETQq1 1 0.78</i>	34314 rgB 2.4	T /9verlock 1
196	The zooplankton-phytoplankton interface in lakes of contrasting trophic status: an experimental comparison. Hydrobiologia, 1990, 200-201, 69-82.	2.0	29
197	Coupling of growth rate and body stoichiometry in Daphnia: a role for maintenance processes?. Freshwater Biology, 2006, 51, 2087-2095.	2.4	29
198	Grasshoppers Regulate N:P Stoichiometric Homeostasis by Changing Phosphorus Contents in Their Frass. PLoS ONE, 2014, 9, e103697.	2.5	29

#	Article	IF	CITATIONS
199	A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics. Mathematical Biosciences, 2013, 244, 107-115.	1.9	28
200	Paul and Peter Lakes: A Liming Experiment Revisited. American Midland Naturalist, 1986, 116, 282.	0.4	27
201	Strength of Zooplankton-Phytoplankton Coupling in Relation to Lake Trophic State. Brock/Springer Series in Contemporary Bioscience, 1990, , 615-631.	0.3	27
202	Nutrient recycling by Daphnia reduces N2 fixation by cyanobacteria. Limnology and Oceanography, 1998, 43, 347-354.	3.1	26
203	Longitudinal variation of microbial communities in benthic biofilms and association with hydrological and physicochemical conditions in glacier-fed streams. Freshwater Science, 2017, 36, 479-490.	1.8	26
204	Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams. Ecology, 2019, 100, e02755.	3.2	26
205	Species invasion progressively disrupts the trophic structure of native food webs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
206	Calcium carbonate deposition drives nutrient cycling in a calcareous headwater stream. Ecological Monographs, 2016, 86, 448-461.	5.4	25
207	Effects of a cyclopoid copepod (Diacyclops thomasi) on phytoplankton and the microbial food web. Aquatic Microbial Ecology, 1997, 12, 29-37.	1.8	24
208	Effects of light and nutrients on plankton stoichiometry and biomass in a P-limited lake. Hydrobiologia, 2002, 481, 101-112.	2.0	24
209	Does the stoichiometric carbon:phosphorus knife edge apply for predaceous copepods?. Oecologia, 2015, 178, 557-569.	2.0	24
210	Stoichiometric impact of calcium carbonate deposition on nitrogen and phosphorus supplies in three montane streams. Biogeochemistry, 2015, 126, 285-300.	3.5	23
211	Consumption explains intraspecific variation in nutrient recycling stoichiometry in a desert fish. Ecology, 2018, 99, 1552-1561.	3.2	23
212	Biological stoichiometry: a theoretical framework connecting ecosystem ecology, evolution, and biochemistry for application in astrobiology. International Journal of Astrobiology, 2003, 2, 185-193.	1.6	21
213	Genomic adaptations in information processing underpin trophic strategy in a whole-ecosystem nutrient enrichment experiment. ELife, 2020, 9, .	6.0	21
214	Denitrification kinetics and denitrifier abundances in sediments of lakes receiving atmospheric nitrogen deposition (Colorado, USA). Biogeochemistry, 2012, 108, 39-54.	3.5	20
215	Dietary phosphate affects food selection, post-ingestive P fate, and performance of a polyphagous herbivore. Journal of Experimental Biology, 2015, 219, 64-72.	1.7	20
216	Responses of leaf C:N:P stoichiometry to water supply in the desert shrub <i>Zygophyllum xanthoxylum</i> . Plant Biology, 2019, 21, 82-88.	3.8	20

#	Article	IF	CITATIONS
217	N:P stoichiometry of sedimentation in lakes of the Canadian shield: Relationships with seston and zooplankton elemental composition. Ecoscience, 1998, 5, 56-63.	1.4	19
218	Modeling and analysis of stoichiometric two-patch consumer–resource systems. Mathematical Biosciences, 2004, 189, 153-184.	1.9	19
219	Interaction between lithification and resource availability in the microbialites of RÃo Mesquites, Cuatro Ciénegas, México. Geobiology, 2016, 14, 176-189.	2.4	19
220	Microplastics in Flathead Lake, a large oligotrophic mountain lake in the USA. Environmental Pollution, 2022, 306, 119445.	7.5	19
221	Ecological stoichiometry in the microbial food web: a test of the light:nutrient hypothesis. Aquatic Microbial Ecology, 2003, 31, 49-65.	1.8	18
222	Understanding mountain lakes in a changing world: introduction to the topical collection. Aquatic Sciences, 2020, 82, 1.	1.5	18
223	The effects of planktivorous fish (golden shiners) on the ciliate community of a mesotrophic lake. Journal of Plankton Research, 1997, 19, 1815-1828.	1.8	17
224	Elements of ecology and evolution. Oikos, 2005, 109, 3-5.	2.7	17
225	Soil bacterial communities vary with grassland degradation in the Qinghai Lake watershed. Plant and Soil, 2021, 460, 541-557.	3.7	16
226	Sustained stoichiometric imbalance and its ecological consequences in a large oligotrophic lake. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
227	Dynamics of a stoichiometric discrete producer-grazer model. Journal of Difference Equations and Applications, 2005, 11, 347-364.	1.1	14
228	Consumer growth linked to diet and RNA-P stoichiometry: Response of Bosmina to variation in riverine food resources. Limnology and Oceanography, 2006, 51, 1859-1869.	3.1	14
229	The evolution of biological stoichiometry under global change. Oikos, 2010, 119, 737-740.	2.7	14
230	Plankton dynamics under different climate conditions in tropical freshwater systems (a reply to the) Tj ETQq0 0 C) rgBT /Ov 2.4	erlock 10 Tf 5 14
231	PHOTOINHIBITION OF TEMPERATE LAKE PHYTOPLANKTON BY NEARâ€6URFACE IRRADIANCE: EVIDENCE FROM VERTICAL PROFILES AND FIELD EXPERIMENTS ¹ . Journal of Phycology, 1985, 21, 419-427.	2.3	13
232	Bacterial Communities in Stream Biofilms in a Degrading Grassland Watershed on the Qinghai–Tibet Plateau. Frontiers in Microbiology, 2020, 11, 1021.	3.5	13
233	Biogeochemistry and Trophic Ecology: A New Food Web Diagram. , 1996, , 72-80.		13

234Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete and Continuous
Dynamical Systems - Series B, 2009, 12, 481-493.0.913

#	Article	lF	CITATIONS
235	Algal Nutrient Deficiency: Growth Bioassays versus Physiological Indicators. Lake and Reservoir Management, 1989, 5, 27-35.	1.3	12
236	Effects of zooplankton on nutrient availability and seston C : N : P stoichiometry in inshore waters of Lake Biwa, Japan. Limnology, 2001, 2, 91-100.	1.5	12
237	Grazing exclusion alters ecosystem carbon pools in Alxa desert steppe. New Zealand Journal of Agricultural Research, 2011, 54, 127-142.	1.6	12
238	Does the Growth Rate Hypothesis Apply across Temperatures? Variation in the Growth Rate and Body Phosphorus of Neotropical Benthic Grazers. Frontiers in Environmental Science, 2017, 5, .	3.3	12
239	Mutualism is not restricted to treeâ€killing bark beetles and fungi: the ecological stoichiometry of secondary bark beetles, fungi, and a scavenger. Ecological Entomology, 2020, 45, 1134-1145.	2.2	12
240	Human perturbation on phosphorus cycles in one of China's most eutrophicated lakes. Resources, Environment and Sustainability, 2021, 4, 100026.	5.9	12
241	Biological stoichiometry of tumor dynamics: Mathematical models and analysis. Discrete and Continuous Dynamical Systems - Series B, 2003, 4, 221-240.	0.9	12
242	Phosphorus is a key component of the resource demands for meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4906-7.	7.1	11
243	Nutrient dynamics and phytoplankton resource limitation in a deep tropical mountain lake. Inland Waters, 2015, 5, 371-386.	2.2	11
244	Effects of Volcanic Pumice Inputs on Microbial Community Composition and Dissolved C/P Ratios in Lake Waters: an Experimental Approach. Microbial Ecology, 2016, 71, 18-28.	2.8	11
245	Impact of Nutrient and Stoichiometry Gradients on Microbial Assemblages in Erhai Lake and Its Input Streams. Water (Switzerland), 2019, 11, 1711.	2.7	11
246	Misuse of the peer-review system: time for countermeasures?. Marine Ecology - Progress Series, 2003, 258, 297-309.	1.9	11
247	Importance of Exogenous Selection in a Fish Hybrid Zone: Insights from Reciprocal Transplant Experiments. Copeia, 2008, 2008, 794-800.	1.3	10
248	What maintains seasonal nitrogen limitation in hyper-eutrophic Lake Dianchi? Insights from stoichiometric three-dimensional numerical modeling. Aquatic Sciences, 2020, 82, 1.	1.5	10
249	Density-dependent effects of omnivorous bitterling (Acheilognathus macropterus) on nutrient and plankton communities: implications for lake management and restoration. Hydrobiologia, 2020, 847, 3309-3319.	2.0	10
250	Biosimplicity via stoichiometry: the evolution of food-web structure and processes. , 2005, , 7-18.		10
251	Experimental separation of the direct and indirect effects of herbivorous zooplankton on phytoplankton in a subalpine lake. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1990, 24, 493-498.	0.1	9
252	Ordinary stoichiometry of extraordinary microorganisms. Geobiology, 2016, 14, 33-53.	2.4	9

#	Article	IF	CITATIONS
253	The multi-element stoichiometry of wet eucalypt forest is transformed by recent, frequent fire. Plant and Soil, 2020, 447, 447-461.	3.7	9
254	Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand. Scientific Reports, 2015, 5, 14811.	3.3	8
255	Modeling the bacterial contribution to planktonic community respiration in the regulation of solar energy and nutrient availability. Ecological Complexity, 2015, 23, 25-33.	2.9	8
256	C:N:P stoichiometry and nutrient limitation of stream biofilms impacted by grassland degradation on the Qinghai-Tibet Plateau. Biogeochemistry, 2020, 150, 31-44.	3.5	8
257	C:N:P stoichiometry in six distinct habitats of a glacier terminus in the source area of the Yangtze River. Biogeochemistry, 2022, 158, 181-194.	3.5	8
258	Beyond monoculture stoichiometry studies: assessing growth, respiration, and feeding responses of three <i>Daphnia</i> species to P-enriched, low C:P lake seston. Inland Waters, 2017, 7, 348-357.	2.2	7
259	Coping with iron limitation: a metabolomic study of SynechocystisÂsp. PCC 6803. Acta Physiologiae Plantarum, 2018, 40, 1.	2.1	7
260	Bacterial communities in surface and basal ice of a glacier terminus in the headwaters of Yangtze River on the Qinghai–Tibet Plateau. Environmental Microbiomes, 2022, 17, 12.	5.0	7
261	The Effect of Nutrients and N:P Ratio on Microbial Communities: Testing the Growth Rate Hypothesis and Its Extensions in Lagunita Pond (Churince). Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2018, , 31-41.	0.4	6
262	High-frequency fire alters soil and plant chemistry but does not lead to nitrogen-limited growth of Eucalyptus pilularis seedlings. Plant and Soil, 2018, 432, 191-205.	3.7	5
263	Unintended nutrient imbalance induced by wastewater effluent inputs to receiving water and its ecological consequences. Frontiers of Environmental Science and Engineering, 2022, 16, .	6.0	5
264	Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability. Nature Precedings, 2010, , .	0.1	4
265	Prokaryotic cells separated from sediments are suitable for elemental composition analysis. Limnology and Oceanography: Methods, 2014, 12, 519-529.	2.0	4
266	The host mussel <i>Sinanodonta woodiana</i> alleviates negative effects of a small omnivorous fish (<i>Acheilognathus macropterus</i>) on water quality: A mesocosm experiment. Freshwater Science, 2020, 39, 752-761.	1.8	4
267	GRASP [Genomic Resource Access for Stoichioproteomics]: comparative explorations of the atomic content of 12 Drosophila proteomes. BMC Genomics, 2013, 14, 599.	2.8	2
268	The zooplankton-phytoplankton interface in lakes of contrasting trophic status: an experimental comparison. , 1990, , 69-82.		2
269	TOO MUCH OF A GOOD THING: ON STOICHIOMETRICALLY BALANCED DIETS AND MAXIMAL GROWTH. , 2006, 87, 1325.		2
270	Biological Stoichiometry: A Chemical Bridge between Ecosystem Ecology and Evolutionary Biology. American Naturalist, 2006, 168, S25.	2.1	2

#	Article	IF	CITATIONS
271	Food quality determinants for Daphnia growth in P-limited lakes. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2002, 28, 1089-1094.	0.1	1
272	Planktonic biodiversity: Scaling up and down. Limnology and Oceanography, 2004, 49, 1225-1228.	3.1	1
273	Editorial: Emerging Frontiers in Ecological Stoichiometry. Frontiers in Ecology and Evolution, 2019, 7,	2.2	1
274	The stoichiometric signature of highâ€frequency fire in forest floor food webs. Ecological Monographs, 2021, 91, e01477.	5.4	1
275	Stoichiometric Analysis of Pelagic Ecosystems: The Biogeochemistry of Planktonic Food Webs. , 2000, , 389-406.		1
276	Inferring threshold food quality from first principles: the influence of life history and assimilation of C and P. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 834-838.	0.1	0
277	Creating and Maintaining a Welcoming Atmosphere for All in the Aquatic Sciences. Limnology and Oceanography Bulletin, 2018, 27, 21-22.	0.4	0
278	Suitability of an Algal Biofuel Species, Scenedesmus acutus, as a Fertilizer for Growth of Conventional and Genetically Modified Lettuce. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 589-594.	1.0	0