You-Lin Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3094428/publications.pdf

Version: 2024-02-01

26630 62596 10,830 326 56 80 h-index citations g-index papers 345 345 345 4317 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Vibration-based monitoring of civil infrastructure: challenges and successes. Journal of Civil Structural Health Monitoring, 2011, 1, 79-95.	3.9	242
2	Temperature effect on vibration properties of civil structures: a literature review and case studies. Journal of Civil Structural Health Monitoring, 2012, 2, 29-46.	3.9	224
3	Dynamic response of damper-connected adjacent buildings under earthquake excitation. Engineering Structures, 1999, 21, 135-148.	5.3	193
4	2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow. Renewable Energy, 2013, 51, 317-330.	8.9	177
5	Dynamics of wind–rail vehicle–bridge systems. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93, 483-507.	3.9	171
6	Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior. Structural Control and Health Monitoring, 2013, 20, 560-575.	4.0	168
7	Control of Alongâ€Wind Response of Structures by Mass and Liquid Dampers. Journal of Engineering Mechanics - ASCE, 1992, 118, 20-39.	2.9	162
8	Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing. Engineering Structures, 2012, 34, 198-212.	5.3	162
9	Characterizing Nonstationary Wind Speed Using Empirical Mode Decomposition. Journal of Structural Engineering, 2004, 130, 912-920.	3.4	139
10	Dynamic analysis of coupled road vehicle and cable-stayed bridge systems under turbulent wind. Engineering Structures, 2003, 25, 473-486.	5 . 3	129
11	Dynamic characteristics and seismic response of adjacent buildings linked by discrete dampers. Earthquake Engineering and Structural Dynamics, 1999, 28, 1163-1185.	4.4	126
12	DYNAMIC INTERACTION OF LONG SUSPENSION BRIDGES WITH RUNNING TRAINS. Journal of Sound and Vibration, 2000, 237, 263-280.	3.9	119
13	Seismic response control of frame structures using magnetorheological/electrorheological dampers. Earthquake Engineering and Structural Dynamics, 2000, 29, 557-575.	4.4	115
14	Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines. Journal of Geodesy, 2010, 84, 145-158.	3.6	105
15	Modal parameter identification of Tsing Ma suspension bridge under Typhoon Victor: EMD-HT method. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92, 805-827.	3.9	98
16	An integrated GPS–accelerometer data processing technique for structural deformation monitoring. Journal of Geodesy, 2006, 80, 705-719.	3.6	98
17	Vibration of coupled train and cable-stayed bridge systems in cross winds. Engineering Structures, 2004, 26, 1389-1406.	5.3	96
18	Vibration Studies of Tsing Ma Suspension Bridge. Journal of Bridge Engineering, 1997, 2, 149-156.	2.9	93

#	Article	IF	CITATIONS
19	Long-term condition assessment of suspenders under traffic loads based on structural monitoring system: Application to the Tsing Ma Bridge. Structural Control and Health Monitoring, 2012, 19, 82-101.	4.0	93
20	Damage identification in civil engineering structures utilizing PCA-compressed residual frequency response functions and neural network ensembles. Structural Control and Health Monitoring, 2011, 18, 207-226.	4.0	91
21	Field measurements of Di Wang Tower during Typhoon York. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89, 73-93.	3.9	90
22	Structural Damage Detection Using Empirical Mode Decomposition: Experimental Investigation. Journal of Engineering Mechanics - ASCE, 2004, 130, 1279-1288.	2.9	89
23	Variation of structural vibration characteristics versus non-uniform temperature distribution. Engineering Structures, 2011, 33, 146-153.	5.3	88
24	FULLY COMPUTERIZED APPROACH TO STUDY CABLE-STAYED BRIDGE–VEHICLE INTERACTION. Journal of Sound and Vibration, 2001, 248, 745-761.	3.9	86
25	VIBRATION ANALYSIS OF TWO BUILDINGS LINKED BY MAXWELL MODEL-DEFINED FLUID DAMPERS. Journal of Sound and Vibration, 2000, 233, 775-796.	3.9	83
26	Buffeting response of long-span cable-supported bridges under skew winds. Part 2: case study. Journal of Sound and Vibration, 2005, 281, 675-697.	3.9	81
27	Substructure based approach to finite element model updating. Computers and Structures, 2011, 89, 772-782.	4.4	81
28	Assessment of Dynamic Measurement Accuracy of GPS in Three Directions. Journal of Surveying Engineering, - ASCE, 2006, 132, 108-117.	1.7	79
29	Optimal multi-type sensor placement for response and excitation reconstruction. Journal of Sound and Vibration, 2016, 360, 112-128.	3.9	79
30	Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations. Applied Energy, 2018, 212, 1107-1125.	10.1	78
31	A Comparative Study of Stationary and Non-stationary Wind Models Using Field Measurements. Boundary-Layer Meteorology, 2007, 122, 105-121.	2.3	76
32	Typhoon-induced non-stationary buffeting response of long-span bridges in complex terrain. Engineering Structures, 2013, 57, 406-415.	5.3	75
33	Comparative studies on damage identification with Tikhonov regularization and sparse regularization. Structural Control and Health Monitoring, 2016, 23, 560-579.	4.0	75
34	An experimental study on self-powered vibration control and monitoring system using electromagnetic TMD and wireless sensors. Sensors and Actuators A: Physical, 2012, 180, 166-176.	4.1	72
35	Dynamic interaction of bridge–train system under nonâ€uniform seismic ground motion. Earthquake Engineering and Structural Dynamics, 2012, 41, 139-157.	4.4	72
36	Wind tunnel investigations of aerodynamic coefficients of road vehicles on bridge deck. Journal of Fluids and Structures, 2012, 30, 35-50.	3.4	71

#	Article	IF	CITATIONS
37	Concrete bridge-borne low-frequency noise simulation based on train–track–bridge dynamic interaction. Journal of Sound and Vibration, 2012, 331, 2457-2470.	3.9	70
38	Optimum parameters of Maxwell model-defined dampers used to link adjacent structures. Journal of Sound and Vibration, 2005, 279, 253-274.	3.9	69
39	Integrated vibration control and health monitoring of building structures using semi-active friction dampers: Part l—methodology. Engineering Structures, 2008, 30, 1789-1801.	5.3	69
40	Buffeting-induced fatigue damage assessment of a long suspension bridge. International Journal of Fatigue, 2009, 31, 575-586.	5.7	69
41	Damage Detection in Long Suspension Bridges Using Stress Influence Lines. Journal of Bridge Engineering, 2015, 20, .	2.9	68
42	Spectrum Models for Nonstationary Extreme Winds. Journal of Structural Engineering, 2015, 141, .	3.4	68
43	Long-term structural performance monitoring system for the Shanghai Tower. Journal of Civil Structural Health Monitoring, 2013, 3, 49-61.	3.9	67
44	Experimental Seismic Study of Adjacent Buildings with Fluid Dampers. Journal of Structural Engineering, 2003, 129, 197-205.	3.4	66
45	Fatigue analysis of long-span suspension bridges under multiple loading: Case study. Engineering Structures, 2011, 33, 3246-3256.	5.3	65
46	Analytical study of wind–rain-induced cable vibration: SDOF model. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91, 27-40.	3.9	64
47	Dynamic Response of Suspension Bridge to High Wind and Running Train. Journal of Bridge Engineering, 2003, 8, 46-55.	2.9	64
48	Tuned liquid column damper for suppressing pitching motion of structures. Engineering Structures, 2000, 22, 1538-1551.	5.3	62
49	Interaction of railway vehicles with track in cross-winds. Journal of Fluids and Structures, 2006, 22, 295-314.	3.4	62
50	Derivation of time-varying mean for non-stationary downburst winds. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 141, 39-48.	3.9	62
51	Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes. Automation in Construction, 2021, 123, 103547.	9.8	62
52	Field measurement results of Tsing Ma suspension Bridge during Typhoon Victor. Structural Engineering and Mechanics, 2000, 10, 545-559.	1.0	62
53	Safety Analysis of Moving Road Vehicles on a Long Bridge under Crosswind. Journal of Engineering Mechanics - ASCE, 2006, 132, 438-446.	2.9	58
54	Computer-aided Nonlinear Vehicle-bridge Interaction Analysis. JVC/Journal of Vibration and Control, 2010, 16, 1791-1816.	2.6	58

#	Article	IF	CITATIONS
55	Structural damage detection-oriented multi-type sensor placement with multi-objective optimization. Journal of Sound and Vibration, 2018, 422, 568-589.	3.9	58
56	Structural damage detection of controlled building structures using frequency response functions. Journal of Sound and Vibration, 2012, 331, 3476-3492.	3.9	57
57	Stress and acceleration analysis of coupled vehicle and long-span bridge systems using the mode superposition method. Engineering Structures, 2010, 32, 1356-1368.	5.3	56
58	Multiscale Modeling and Model Updating of a Cable-Stayed Bridge. II: Model Updating Using Modal Frequencies and Influence Lines. Journal of Bridge Engineering, 2015, 20, .	2.9	56
59	Fatigue life estimation of steel girder of Yangpu cable-stayed Bridge due to buffeting. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80, 383-400.	3.9	55
60	Control of Wind-Excited Truss Tower Using Semiactive Friction Damper. Journal of Structural Engineering, 2001, 127, 861-868.	3.4	55
61	Modal identification of Di Wang Building under Typhoon York using the Hilbert-Huang transform method. Structural Design of Tall and Special Buildings, 2003, 12, 21-47.	1.9	55
62	Monitoring temperature effect on a long suspension bridge. Structural Control and Health Monitoring, 2009, 17, n/a-n/a.	4.0	55
63	MITIGATION OF THREE-DIMENSIONAL VIBRATION OF INCLINED SAG CABLE USING DISRETE OIL DAMPERS — II. APPLICATION. Journal of Sound and Vibration, 1998, 214, 675-693.	3.9	54
64	Integrated vibration control and health monitoring of building structures using semi-active friction dampers: Part II â€" Numerical investigation. Engineering Structures, 2008, 30, 573-587.	5.3	53
65	Multi-type sensor placement and response reconstruction for structural health monitoring of long-span suspension bridges. Science Bulletin, 2016, 61, 313-329.	9.0	53
66	Control of wind-induced tall building vibration by tuned mass dampers. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 40, 1-32.	3.9	52
67	The effect of tuned mass dampers and liquid dampers on cross-wind response of tall/slender structures. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 40, 33-54.	3.9	52
68	Fully coupled buffeting analysis of Tsing Ma suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85, 97-117.	3.9	52
69	Buffeting response of long-span cable-supported bridges under skew winds. Part 1: theory. Journal of Sound and Vibration, 2005, 281, 647-673.	3.9	52
70	An iterative substructuring approach to the calculation of eigensolution and eigensensitivity. Journal of Sound and Vibration, 2011, 330, 3368-3380.	3.9	52
71	INTEGRATED OPTIMAL PLACEMENT OF DISPLACEMENT TRANSDUCERS AND STRAIN GAUGES FOR BETTER ESTIMATION OF STRUCTURAL RESPONSE. International Journal of Structural Stability and Dynamics, 2011, 11, 581-602.	2.4	51
72	Multiscale Modeling and Model Updating of a Cable-Stayed Bridge. I: Modeling and Influence Line Analysis. Journal of Bridge Engineering, 2015, 20, .	2.9	51

#	Article	IF	CITATIONS
73	Energy regenerative tuned mass dampers in high-rise buildings. Structural Control and Health Monitoring, 2018, 25, e2072.	4.0	51
74	Semi-active control of a building complex with variable friction dampers. Engineering Structures, 2007, 29, 1209-1225.	5.3	49
75	Inverse substructure method for model updating of structures. Journal of Sound and Vibration, 2012, 331, 5449-5468.	3.9	48
76	Hybrid identification method for multi-story buildings with unknown ground motion: theory. Journal of Sound and Vibration, 2006, 291, 215-239.	3.9	47
77	Experimental investigation of adjacent buildings connected by fluid damper. Earthquake Engineering and Structural Dynamics, 1999, 28, 609-631.	4.4	46
78	Improved substructuring method for eigensolutions of large-scale structures. Journal of Sound and Vibration, 2009, 323, 718-736.	3.9	46
79	Dynamic Stress Analysis of Long Suspension Bridges under Wind, Railway, and Highway Loadings. Journal of Bridge Engineering, 2011, 16, 383-391.	2.9	46
80	Dynamic Response of Suspension Bridge to Typhoon and Trains. II: Numerical Results. Journal of Structural Engineering, 2007, 133, 12-21.	3.4	45
81	Mode shape corrections for wind tunnel tests of tall buildings. Engineering Structures, 1993, 15, 387-392.	5.3	44
82	MITIGATION OF THREE-DIMENSIONAL VIBRATION OF INCLINED SAG CABLE USING DISCRETE OIL DAMPERS — I. FORMULATION. Journal of Sound and Vibration, 1998, 214, 659-673.	3.9	44
83	Vibration of Inclined Sag Cables with Oil Dampers in Cable-Stayed Bridges. Journal of Bridge Engineering, 1998, 3, 194-203.	2.9	44
84	Dynamic analysis of wind-excited truss tower with friction dampers. Computers and Structures, 2001, 79, 2817-2831.	4.4	44
85	Seismic Protection of a Building Complex Using Variable Friction Damper: Experimental Investigation. Journal of Engineering Mechanics - ASCE, 2008, 134, 637-649.	2.9	44
86	Tsing Ma bridge deck under skew winds—Part II: flutter derivatives. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90, 807-837.	3.9	41
87	Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test. Wind and Structures, an International Journal, 2014, 19, 145-167.	0.8	41
88	On modelling of typhoon-induced non-stationary wind speed for tall buildings. Structural Design of Tall and Special Buildings, 2004, 13, 145-163.	1.9	39
89	Dynamic Response of Suspension Bridge to Typhoon and Trains. I: Field Measurement Results. Journal of Structural Engineering, 2007, 133, 3-11.	3.4	39
90	Wind-induced vibration control of long span cable-stayed bridges using multiple pressurized tuned liquid column dampers. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96, 166-192.	3.9	39

#	Article	IF	Citations
91	Experimental Investigation on Statistical Moment-based Structural Damage Detection Method. Structural Health Monitoring, 2009, 8, 555-571.	7.5	39
92	A new statistical moment-based structural damage detection method. Structural Engineering and Mechanics, 2008, 30, 445-466.	1.0	39
93	Electromagnetic energy harvesting from structural vibrations during earthquakes. Smart Structures and Systems, 2016, 18, 449-470.	1.9	39
94	Effects of bridge motion and crosswind on ride comfort of road vehicles. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92, 641-662.	3.9	38
95	Damping cable vibration for a cable-stayed bridge using adjustable fluid dampers. Journal of Sound and Vibration, 2007, 306, 349-360.	3.9	38
96	SHMS-Based Fatigue Reliability Analysis of Multiloading Suspension Bridges. Journal of Structural Engineering, 2012, 138, 299-307.	3.4	38
97	Integrated vibration control and health monitoring of building structures: a time-domain approach. Smart Structures and Systems, 2010, 6, 811-833.	1.9	38
98	Tsing Ma bridge deck under skew winds—Part I: Aerodynamic coefficients. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90, 781-805.	3.9	37
99	Pseudo-excitation method for vibration analysis of wind-excited structures. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83, 443-454.	3.9	36
100	STRUCTURAL HEALTH MONITORING ORIENTED FINITE ELEMENT MODEL OF TSING MA BRIDGE TOWER. International Journal of Structural Stability and Dynamics, 2007, 07, 647-668.	2.4	36
101	Experimental study of wind–rain-induced cable vibration using a new model setup scheme. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96, 2438-2451.	3.9	36
102	Multi-Type Sensor Placement for Multi-Scale Response Reconstruction. Advances in Structural Engineering, 2013, 16, 1779-1797.	2.4	35
103	Optimal blade pitch function and control device for high-solidity straight-bladed vertical axis wind turbines. Applied Energy, 2019, 242, 1613-1625.	10.1	35
104	Buffeting analysis of long span bridges: a new algorithm. Computers and Structures, 1998, 68, 303-313.	4.4	34
105	Variations of wind pressure on hip roofs with roof pitch. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 73, 267-284.	3.9	34
106	Conditional Simulation of Nonstationary Fluctuating Wind Speeds for Long-Span Bridges. Journal of Engineering Mechanics - ASCE, 2014, 140, 61-73.	2.9	34
107	Buffeting-induced stresses in a long suspension bridge: structural health monitoring oriented stress analysis. Wind and Structures, an International Journal, 2009, 12, 479-504.	0.8	34
108	Closed-form solution for seismic response of adjacent buildings with linear quadratic Gaussian controllers. Earthquake Engineering and Structural Dynamics, 2002, 31, 235-259.	4.4	33

#	Article	IF	CITATIONS
109	Seismic reliability analysis of hysteretic structure with viscoelastic dampers. Engineering Structures, 2002, 24, 373-383.	5.3	33
110	Damage detection of mono-coupled periodic structures based on sensitivity analysis of modal parameters. Journal of Sound and Vibration, 2005, 285, 365-390.	3.9	33
111	Dynamic response of the Trinity River Relief Bridge to controlled pile damage: modeling and experimental data analysis comparing Fourier and Hilbert–Huang techniques. Journal of Sound and Vibration, 2005, 285, 1049-1070.	3.9	33
112	Vortex-induced vibration analysis of long-span bridges with twin-box decks under non-uniformly distributed turbulent winds. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172, 31-41.	3.9	33
113	Fatigue Performance of Screw-Fastened Light-Gauge-Steel Roofing Sheets. Journal of Structural Engineering, 1995, 121, 389-398.	3.4	32
114	Wind–rain-induced vibration and control of stay cables in a cable-stayed bridge. Structural Control and Health Monitoring, 2007, 14, 1013-1033.	4.0	32
115	ADVANCED FINITE ELEMENT MODEL OF TSING MA BRIDGE FOR STRUCTURAL HEALTH MONITORING. International Journal of Structural Stability and Dynamics, 2011, 11, 313-344.	2.4	32
116	Dynamic Analysis of Wind-Vehicle-Bridge Coupling System during the Meeting of Two Trains. Advances in Structural Engineering, 2013, 16, 1663-1670.	2.4	32
117	Tropical Storm–Induced Buffeting Response of Long-Span Bridges: Enhanced Nonstationary Buffeting Force Model. Journal of Structural Engineering, 2017, 143, 04017027.	3.4	32
118	Identification of modal damping ratios of structures with closely spaced modal frequencies. Structural Engineering and Mechanics, 2002, 14, 417-434.	1.0	32
119	Updating Multiscale Model of a Long-Span Cable-Stayed Bridge. Journal of Bridge Engineering, 2018, 23,	2.9	31
120	Modelling and validation of coupled high-speed maglev train-and-viaduct systems considering support flexibility. Vehicle System Dynamics, 2019, 57, 161-191.	3.7	31
121	Hybrid platform for high-tech equipment protection against earthquake and microvibration. Earthquake Engineering and Structural Dynamics, 2006, 35, 943-967.	4.4	30
122	Multi-level damage identification of a bridge structure: a combined numerical and experimental investigation. Engineering Structures, 2018, 156, 53-67.	5.3	30
123	Buffeting Analysis of Long-Span Bridges under Typhoon Winds with Time-Varying Spectra and Coherences. Journal of Structural Engineering, 2020, 146, .	3.4	30
124	Test of screw fastened profiled roofing sheets subject to simulated wind uplift. Engineering Structures, 1993, 15, 423-430.	5.3	29
125	Modal analysis and seismic response of steel frames with connection dampers. Engineering Structures, 2001, 23, 385-396.	5.3	29
126	Mixed-dimensional finite element coupling for structural multi-scale simulation. Finite Elements in Analysis and Design, 2014, 92, 12-25.	3.2	29

#	Article	IF	Citations
127	Safety analysis of a road vehicle passing by a bridge tower under crosswinds. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137, 25-36.	3.9	29
128	Vehicle-induced fatigue damage prognosis of orthotropic steel decks of cable-stayed bridges. Engineering Structures, 2020, 212, 110509.	5. 3	29
129	Calculation of eigenvalue and eigenvector derivatives with the improved Kron's substructuring method. Structural Engineering and Mechanics, 2010, 36, 37-55.	1.0	29
130	Seismic response control of a building complex utilizing passive friction damper: experimental investigation. Earthquake Engineering and Structural Dynamics, 2006, 35, 657-677.	4.4	28
131	Stochastic modelling of traffic-induced building vibration. Journal of Sound and Vibration, 2008, 313, 149-170.	3.9	28
132	An efficient algorithm for simultaneous identification of time-varying structural parameters and unknown excitations of a building structure. Engineering Structures, 2015, 98, 29-37.	5.3	28
133	Structural control and health monitoring of building structures with unknown ground excitations: Experimental investigation. Journal of Sound and Vibration, 2017, 390, 23-38.	3.9	28
134	Traffic Load Simulation for Long-Span Suspension Bridges. Journal of Bridge Engineering, 2019, 24, .	2.9	28
135	High-speed running maglev trains interacting with elastic transitional viaducts. Engineering Structures, 2019, 183, 562-578.	5.3	28
136	Evaluation of atmospheric corrosion damage to steel space structures in coastal areas. International Journal of Solids and Structures, 2005, 42, 4673-4694.	2.7	27
137	Fluid dynamics around an inclined cylinder with running water rivulets. Journal of Fluids and Structures, 2005, 21, 49-64.	3.4	27
138	Semiactive Seismic Response Control of Buildings with Podium Structure. Journal of Structural Engineering, 2005, 131, 890-899.	3.4	27
139	Fatigue assessment of multi-loading suspension bridges using continuum damage model. International Journal of Fatigue, 2012, 40, 27-35.	5.7	27
140	Dual-type sensor placement for multi-scale response reconstruction. Mechatronics, 2014, 24, 376-384.	3.3	27
141	Aeroelastic torsional behaviour of tall buildings in wakes. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51, 229-248.	3.9	26
142	Parametric study of active mass dampers for wind-excited tall buildings. Engineering Structures, 1996, 18, 64-76.	5.3	26
143	Modal analysis of tower-cable system of Tsing Ma long suspension bridge. Engineering Structures, 1997, 19, 857-867.	5.3	26
144	Structural damage identification via multi-type sensors and response reconstruction. Structural Health Monitoring, 2016, 15, 715-729.	7.5	26

#	Article	IF	Citations
145	A semi-empirical model for vortex-induced vertical forces on a twin-box deck under turbulent wind flow. Journal of Fluids and Structures, 2017, 71, 183-198.	3.4	26
146	Experimental investigation on multi-objective multi-type sensor optimal placement for structural damage detection. Structural Health Monitoring, 2019, 18, 882-901.	7.5	26
147	Semianalytical Method for Parametric Study of Tuned Mass Dampers. Journal of Structural Engineering, 1994, 120, 747-764.	3.4	25
148	Multiple tuned liquid column dampers for reducing coupled lateral and torsional vibration of structures. Engineering Structures, 2004, 26, 745-758.	5.3	25
149	OPTIMUM PARAMETERS OF TUNED LIQUID COLUMN DAMPER FOR SUPPRESSING PITCHING VIBRATION OF AN UNDAMPED STRUCTURE. Journal of Sound and Vibration, 2000, 235, 639-653.	3.9	24
150	Microvibration control platform for high technology facilities subject to traffic-induced ground motion. Engineering Structures, 2003, 25, 1069-1082.	5.3	24
151	Running safety analysis of a train on the Tsing Ma Bridge under turbulent winds. Earthquake Engineering and Engineering Vibration, 2010, 9, 307-318.	2.3	24
152	Time-varying power spectra and coherences of non-stationary typhoon winds. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 198, 104115.	3.9	24
153	A new damage index for detecting sudden change of structural stiffness. Structural Engineering and Mechanics, 2007, 26, 315-341.	1.0	24
154	Experimental Study of Vibration Mitigation of Bridge Stay Cables. Journal of Structural Engineering, 1999, 125, 977-986.	3.4	23
155	Semi-active control of seismic response of tall buildings with podium structure using ER/MR dampers. Structural Design of Tall Buildings, 2001, 10, 179-192.	0.3	23
156	Multiple-tuned liquid column dampers for torsional vibration control of structures: experimental investigation. Earthquake Engineering and Structural Dynamics, 2002, 31, 977-991.	4.4	23
157	Structural damage identification via response reconstruction under unknown excitation. Structural Control and Health Monitoring, 2017, 24, e1953.	4.0	23
158	Making good use of structural health monitoring systems of long-span cable-supported bridges. Journal of Civil Structural Health Monitoring, 2018, 8, 477-497.	3.9	23
159	Determination of Wind-Induced Fatigue Loading on Roof Cladding. Journal of Engineering Mechanics - ASCE, 1995, 121, 956-963.	2.9	22
160	Modal analysis of suspension bridge deck units in erection stage. Engineering Structures, 1998, 20, 1102-1112.	5.3	22
161	Optimum design of active/passive control devices for tall buildings under earthquake excitation. Structural Design of Tall Buildings, 2002, 11, 109-127.	0.3	22
162	Aerodynamic Coefficients of Inclined Circular Cylinders with Artificial Rivulet in Smooth Flow. Advances in Structural Engineering, 2006, 9, 265-278.	2.4	22

#	Article	IF	CITATIONS
163	DATA FUSION-BASED STRUCTURAL DAMAGE DETECTION UNDER VARYING TEMPERATURE CONDITIONS. International Journal of Structural Stability and Dynamics, 2012, 12, 1250052.	2.4	22
164	Testbed for Structural Health Monitoring of Long-Span Suspension Bridges. Journal of Bridge Engineering, 2012, 17, 896-906.	2.9	22
165	Dynamic Analysis of a Coupled System of High-Speed Maglev Train and Curved Viaduct. International Journal of Structural Stability and Dynamics, 2018, 18, 1850143.	2.4	22
166	NON-LINEAR VIBRATION OF CABLE–DAMPER SYSTEMS PART II: APPLICATION AND VERIFICATION. Journal of Sound and Vibration, 1999, 225, 465-481.	3.9	21
167	Active/robust moment controllers for seismic response control of a large span building on top of ship lift towers. Journal of Sound and Vibration, 2003, 261, 277-296.	3.9	21
168	Stochastic damage detection method for building structures with parametric uncertainties. Journal of Sound and Vibration, 2011, 330, 4725-4737.	3.9	21
169	Extreme value of typhoon-induced non-stationary buffeting response of long-span bridges. Probabilistic Engineering Mechanics, 2014, 36, 19-27.	2.7	21
170	Stress-level buffeting analysis of a long-span cable-stayed bridge with a twin-box deck under distributed wind loads. Engineering Structures, 2016, 127, 416-433.	5.3	21
171	Seismic Retrofitting of Non-Seismically Designed RC Beam-Column Joints using Buckling-Restrained Haunches: Design and Analysis. Journal of Earthquake Engineering, 2018, 22, 1188-1208.	2.5	21
172	Interference effects on aeroelastic torsional response of structurally asymmetric tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57, 41-61.	3.9	20
173	Model- and full-scale comparison of fatigue-related characteristics of wind pressures on the Texas Tech Building. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 58, 147-173.	3.9	20
174	NON-LINEAR VIBRATION OF CABLE–DAMPER SYSTEMS PART I: FORMULATION. Journal of Sound and Vibration, 1999, 225, 447-463.	3.9	20
175	FULLY COUPLED BUFFETING ANALYSIS OF LONG-SPAN CABLE-SUPPORTED BRIDGES: FORMULATION. Journal of Sound and Vibration, 1999, 228, 569-588.	3.9	20
176	Hybrid identification method for multi-story buildings with unknown ground motion: Experimental investigation. Engineering Structures, 2005, 27, 1234-1247.	5.3	20
177	Characteristics of distributed aerodynamic forces on a twin-box bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 131, 31-45.	3.9	20
178	Moving-window extended Kalman filter for structural damage detection with unknown process and measurement noises. Measurement: Journal of the International Measurement Confederation, 2016, 88, 428-440.	5.0	20
179	Field measurements and analyses of environmental vibrations induced by high-speed Maglev. Science of the Total Environment, 2016, 568, 1295-1307.	8.0	20
180	Investigation on characteristics and span-wise correlation of vortex-induced forces on a twin-box deck using newly-developed wind-tunnel test technique. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 164, 69-81.	3.9	20

#	Article	IF	CITATIONS
181	Cluster computingâ€aided model updating for a highâ€fidelity finite element model of a longâ€span cableâ€stayed bridge. Earthquake Engineering and Structural Dynamics, 2020, 49, 904-923.	4.4	20
182	Analysis on control of flow-induced vibration by tuned liquid damper with crossed tube-like containers. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 50, 351-360.	3.9	19
183	Multiple-tuned liquid column dampers for torsional vibration control of structures: theoretical investigation. Earthquake Engineering and Structural Dynamics, 2003, 32, 309-328.	4.4	19
184	Hybrid platform for vibration control of high-tech equipment in buildings subject to ground motion. Part 1: experiment. Earthquake Engineering and Structural Dynamics, 2003, 32, 1185-1200.	4.4	19
185	A Refined Model for Typhoon Wind Field Simulation in Boundary Layer. Advances in Structural Engineering, 2012, 15, 77-89.	2.4	19
186	Multi-scale fatigue damage prognosis for long-span steel bridges under vehicle loading. Structure and Infrastructure Engineering, 2019, 15, 524-538.	3.7	19
187	Multiscale fatigue damage evolution in orthotropic steel deck of cable-stayed bridges. Engineering Structures, 2021, 237, 112144.	5. 3	19
188	Closed form solution for alongwind response of actively controlled tall buildings with LQG controllers. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89, 785-807.	3.9	18
189	Conditional simulation of spatially variable seismic ground motions based on evolutionary spectra. Earthquake Engineering and Structural Dynamics, 2012, 41, 2125-2139.	4.4	18
190	Nonlinear aerodynamic forces on thin flat plate: Numerical study. Journal of Fluids and Structures, 2014, 44, 182-194.	3.4	18
191	Multi-scale fatigue model and image-based simulation of collective short cracks evolution process. Computational Materials Science, 2016, 117, 24-32.	3.0	18
192	High-solidity straight-bladed vertical axis wind turbine: Aerodynamic force measurements. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184, 34-48.	3.9	18
193	Concurrent multi-scale fatigue damage evolution simulation method for long-span steel bridges. International Journal of Damage Mechanics, 2019, 28, 165-182.	4.2	18
194	Fatigue damage estimation of metal roof cladding subject to wind loading. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72, 379-388.	3.9	17
195	Forced vibration studies of sagged cables with oil damper using a hybrid method. Engineering Structures, 1998, 20, 692-705.	5.3	17
196	Triple-girder model for modal analysis of cable-stayed bridges with warping effect. Engineering Structures, 2000, 22, 1313-1323.	5.3	17
197	Microvibration control of coupled high tech equipment-building systems in vertical direction. International Journal of Solids and Structures, 2006, 43, 6521-6534.	2.7	17
198	Synthesis of vibration control and health monitoring of building structures under unknown excitation. Smart Materials and Structures, 2014, 23, 105025.	3.5	17

#	Article	IF	CITATIONS
199	Multi-Scale Failure Analysis of Transmission Towers Under Downburst Loading. International Journal of Structural Stability and Dynamics, 2018, 18, 1850029.	2.4	17
200	Dynamic behaviour of high-sided road vehicles subject to a sudden crosswind gust. Wind and Structures, an International Journal, 2003, 6, 325-346.	0.8	17
201	SHM-Based Seismic Performance Assessment of High-Rise Buildings under Long-Period Ground Motion. Journal of Structural Engineering, 2019, 145, 04019038.	3.4	16
202	A Multi-Taper S-Transform Method for Spectral Estimation of Stationary Processes. IEEE Transactions on Signal Processing, 2021, 69, 1452-1467.	5.3	16
203	Local plastic failure of light gauge steel roofing sheets: Finite element analysis versus experiment. Journal of Constructional Steel Research, 1994, 30, 125-150.	3.9	15
204	Occurrence Probability of Wind-Rain-Induced Stay Cable Vibration. Advances in Structural Engineering, 2008, 11, 53-69.	2.4	15
205	Crosswind Effect Studies on Road Vehicle Passing by Bridge Tower using Computational Fluid Dynamics. Engineering Applications of Computational Fluid Mechanics, 2014, 8, 330-344.	3.1	15
206	Multi-scale model updating of a transmission tower structure using Kriging meta-method. Structural Control and Health Monitoring, 2017, 24, e1952.	4.0	15
207	Nonlinear model updating of a reinforced concrete pedestrian cableâ€stayed bridge. Structural Control and Health Monitoring, 2020, 27, e2487.	4.0	15
208	Prediction of typhoon design wind speed and profile over complex terrain. Structural Engineering and Mechanics, 2013, 45, 1-18.	1.0	15
209	Torsion response and vibration suppression of wind-excited buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43, 1997-2008.	3.9	14
210	Adjustable fluid damper with SMA actuators. Smart Materials and Structures, 2006, 15, 1483-1492.	3.5	14
211	Experimental study of a hybrid platform for high-tech equipment protection against earthquake and microvibration. Earthquake Engineering and Structural Dynamics, 2008, 37, 747-767.	4.4	14
212	Determination of Aerodynamic Forces on Stationary/Moving Vehicle-Bridge Deck System Under Crosswinds using Computational Fluid Dynamics. Engineering Applications of Computational Fluid Mechanics, 2013, 7, 355-368.	3.1	14
213	Multi-level damage identification with response reconstruction. Mechanical Systems and Signal Processing, 2017, 95, 42-57.	8.0	14
214	Multi-type sensor placement and response reconstruction for building structures: Experimental investigations. Earthquake Engineering and Engineering Vibration, 2018, 17, 29-46.	2.3	14
215	Long-Period Ground Motion Simulation and its Impact on Seismic Response of High-Rise Buildings. Journal of Earthquake Engineering, 2018, 22, 1285-1315.	2.5	14
216	Collapse prognosis of a longâ€span cableâ€stayed bridge based on shake table test and nonlinear model updating. Earthquake Engineering and Structural Dynamics, 2021, 50, 455-474.	4.4	14

#	Article	IF	CITATIONS
217	Analytical study of wind-rain-induced cable vibration : 2DOF model. Wind and Structures, an International Journal, 2003, 6, 291-306.	0.8	14
218	Multi-taper S-transform method for evolutionary spectrum estimation. Mechanical Systems and Signal Processing, 2022, 168, 108667.	8.0	14
219	Dynamic performance of cable-stayed bridge tower with multi-stage pendulum mass damper under wind excitations — I: Theory. Earthquake Engineering and Engineering Vibration, 2007, 6, 295-306.	2.3	13
220	FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation. Journal of Sound and Vibration, 2014, 333, 2762-2775.	3.9	13
221	Seismic Responses and Collapse of a RC Pedestrian Cable-Stayed Bridge: Shake Table Tests. International Journal of Structural Stability and Dynamics, 2019, 19, 1950067.	2.4	13
222	Multistage damage detection of a transmission tower: Numerical investigation and experimental validation. Structural Control and Health Monitoring, 2019, 26, e2366.	4.0	13
223	Vehicle-induced dynamic stress analysis of orthotropic steel decks of cable-stayed bridges. Structure and Infrastructure Engineering, 2020, 16, 1067-1081.	3.7	13
224	Time history analysis-based nonlinear finite element model updating for a long-span cable-stayed bridge. Structural Health Monitoring, 2021, 20, 2566-2584.	7. 5	13
225	Conditionally simulating nonstationary typhoon winds with time-varying coherences for long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 212, 104599.	3.9	13
226	Displacement-based design approach for highway bridges with SMA isolators. Smart Structures and Systems, 2011, 8, 173-190.	1.9	13
227	Optimized C-vine copula and environmental contour of joint wind-wave environment for sea-crossing bridges. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 225, 104989.	3.9	13
228	Statistical moment-based structural damage detection method in time domain. Earthquake Engineering and Engineering Vibration, 2013, 12, 13-23.	2.3	12
229	Refined dynamic progressive collapse analysis of RC structures. Bulletin of Earthquake Engineering, 2018, 16, 1293-1322.	4.1	12
230	Wind-induced self-excited vibrations of a twin-deck bridge and the effects of gap-width. Wind and Structures, an International Journal, 2007, 10, 463-479.	0.8	12
231	Identification of damage in dome-like structures using hybrid sensor measurements and artificial neural networks. Smart Materials and Structures, 2013, 22, 105014.	3.5	11
232	Two-Step Method for Instability Damage Detection in Tower Body of Transmission Structures. Advances in Structural Engineering, 2013, 16, 219-232.	2.4	11
233	Autoâ€adaptive multiblock cycle jump algorithm for fatigue damage simulation of longâ€span steel bridges. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 919-928.	3.4	11
234	A hybrid DMST model for pitch optimization and performance assessment of high-solidity straight-bladed vertical axis wind turbines. Applied Energy, 2019, 250, 215-228.	10.1	11

#	Article	IF	CITATIONS
235	Buffeting-induced stress analysis of long-span twin-box-beck bridges based on POD pressure modes. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188, 397-409.	3.9	11
236	Generalization of the statistical moment-based damage detection method. Structural Engineering and Mechanics, 2011, 38, 715-732.	1.0	11
237	Wind-induced vibration control of bridges using liquid column damper. Earthquake Engineering and Engineering Vibration, 2002, 1, 271-280.	2.3	10
238	Hybrid platform for vibration control of high-tech equipment in buildings subject to ground motion. Part 2: analysis. Earthquake Engineering and Structural Dynamics, 2003, 32, 1201-1215.	4.4	10
239	Multi-hazard performance assessment of a transfer-plate high-rise building. Earthquake Engineering and Engineering Vibration, 2007, 6, 371-382.	2.3	10
240	Two-Stage Covariance-Based Multisensing Damage Detection Method. Journal of Engineering Mechanics - ASCE, 2017, 143, .	2.9	10
241	Yaw wind effect on flutter instability of four typical bridge decks. Wind and Structures, an International Journal, 2013, 17, 317-343.	0.8	10
242	Seismic response control of large-span machinery building on top of ship lift towers using ER/MR moment controllers. Engineering Structures, 2002, 24, 517-527.	5. 3	9
243	Integrated system identification and reliability evaluation of stochastic building structures. Probabilistic Engineering Mechanics, 2011, 26, 528-538.	2.7	9
244	Response covariance-based sensor placement for structural damage detection. Structure and Infrastructure Engineering, 2018, 14, 1207-1220.	3.7	9
245	POD-based modelling of distributed aerodynamic and aeroelastic pressures on bridge decks. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179, 524-540.	3.9	9
246	Component-Level Seismic Performance Assessment of Instrumented Super High-Rise Buildings under Bidirectional Long-Period Ground Motions. Journal of Structural Engineering, 2021, 147, .	3.4	9
247	Flutter analysis of Stonecutters Bridge. Wind and Structures, an International Journal, 2006, 9, 125-146.	0.8	9
248	Torsional vibration and stability of wind-excited tall buildings with eccentricity. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 50, 299-308.	3.9	8
249	<title>Measurement of vibrations of tall buildings with GPS: a case study</title> ., 2001, 4337, 477.		8
250	Optimal Performance of the TLCD in Structural Pitching Vibration Control. JVC/Journal of Vibration and Control, 2002, 8, 619-642.	2.6	8
251	Two-stage damage diagnosis approach for steel braced space frame structures. Engineering Structures, 2007, 29, 3277-3292.	5.3	8
252	SHM-based F-AHP bridge rating system with application to Tsing Ma Bridge. Frontiers of Architecture and Civil Engineering in China, 2011, 5, 465-478.	0.4	8

#	Article	IF	Citations
253	High-solidity straight-bladed vertical axis wind turbine: Numerical simulation and validation. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 193, 103960.	3.9	8
254	Optimal multiâ€type sensor placement for monitoring highâ€rise buildings under bidirectional longâ€period ground motions. Structural Control and Health Monitoring, 2020, 27, e2541.	4.0	8
255	Experimental and numerical verification of hydraulic displacement amplification damping system. Structural Engineering and Mechanics, 2009, 33, 1-14.	1.0	8
256	A webâ€based and designâ€oriented structural health evaluation system for longâ€span bridges with structural health monitoring system. Structural Control and Health Monitoring, 2022, 29, e2879.	4.0	8
257	Dynamic response of a long span suspension bridge and running safety of a train under wind action. Frontiers of Architecture and Civil Engineering in China, 2007, 1, 71-79.	0.4	7
258	Active stiffness control of windâ€rainâ€induced vibration of prototype stay cable. International Journal for Numerical Methods in Engineering, 2008, 74, 80-100.	2.8	7
259	Verification of a Cable Element for Cable Parametric Vibration of One-Cable-Beam System Subject to Harmonic Excitation and Random Excitation. Advances in Structural Engineering, 2011, 14, 589-595.	2.4	7
260	Imperfect Correlation of Vortex-Induced Fluctuating Pressures and Vertical Forces on a Typical Flat Closed Box Deck. Advances in Structural Engineering, 2015, 18, 1597-1618.	2.4	7
261	Structural Analysis of Large-Scale Vertical Axis Wind Turbines Part II: Fatigue and Ultimate Strength Analyses. Energies, 2019, 12, 2584.	3.1	7
262	Dynamic stress analysis for fatigue damage prognosis of long-span bridges. Structure and Infrastructure Engineering, 2019, 15, 582-599.	3.7	7
263	System design and demonstration of performance monitoring of a butterflyâ€shaped arch footbridge. Structural Control and Health Monitoring, 2021, 28, e2738.	4.0	7
264	Damage detection of mono-coupled multistory buildings: Numerical and experimental investigations. Structural Engineering and Mechanics, 2004, 18, 709-729.	1.0	7
265	Crosswind effects on high-sided road vehicles with and without movement. Wind and Structures, an International Journal, 2014, 18, 155-180.	0.8	7
266	Wind-Induced Fatigue Loading and Damage to Hip and Gable Roof Claddings. Journal of Structural Engineering, 1996, 122, 1475-1483.	3.4	6
267	Dynamic displacement measurement accuracy of GPS for monitoring large civil engineering structures., 2005,,.		6
268	Finite element-based force identification of sliding support systems: Part lâ€"Theory. Finite Elements in Analysis and Design, 2006, 42, 229-248.	3.2	6
269	Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation. Energies, 2019, 12, 2573.	3.1	6
270	C-AHP rating system for routine general inspection of long-span suspension bridges. Structure and Infrastructure Engineering, 2023, 19, 663-677.	3.7	6

#	Article	IF	CITATIONS
271	Measurement of aerodynamic coefficients of tower components of Tsing Ma Bridge under yaw winds. Wind and Structures, an International Journal, 2003, 6, 53-70.	0.8	6
272	Buffeting response control of a long span cable-stayed bridge during construction using semi-active tuned liquid column dampers. Wind and Structures, an International Journal, 2006, 9, 271-296.	0.8	6
273	Experimental Study on Performance of Tuned Liquid Column Damper in Suppressing Pitching Vibration of Structures. Journal of Intelligent Material Systems and Structures, 1999, 10, 386-396.	2.5	5
274	Corrosion damage assessment and monitoring of large steel space structures. Frontiers of Architecture and Civil Engineering in China, 2010, 4, 354-369.	0.4	5
275	A Substructuring Method for Model Updating and Damage Identification. Procedia Engineering, 2011, 14, 3095-3103.	1.2	5
276	POD-based spanwise correlation analysis of aerodynamic and aeroelastic pressures on twin-box bridge decks. Journal of Fluids and Structures, 2018, 82, 520-537.	3.4	5
277	Optimization of horizontally curved track in the alignment design of a high-speed maglev line. Structure and Infrastructure Engineering, 2020, 16, 1019-1036.	3.7	5
278	Inelastic seismic response of adjacent buildings linked by fluid dampers. Structural Engineering and Mechanics, 2003, 15, 513-534.	1.0	5
279	Buffeting response of long suspension bridges to skew winds. Wind and Structures, an International Journal, 2003, 6, 179-196.	0.8	5
280	Time domain buffeting analysis of long suspension bridges under skew winds. Wind and Structures, an International Journal, 2004, 7, 421-447.	0.8	5
281	Highly efficient and accurate buffeting analysis of complex structures. Communications in Numerical Methods in Engineering, 1998, 14, 559-567.	1.3	4
282	Vibration Control of a Long Span Cable-stayed Bridge Tower Using Pendulum Mass Damper. HKIE Transactions, 2006, 13, 44-56.	0.1	4
283	Dynamic performance of cable-stayed bridge tower with multi-stage pendulum mass damper under wind excitations — II: Experiment. Earthquake Engineering and Engineering Vibration, 2007, 6, 417-424.	2.3	4
284	Analysis of Rain-Wind Induced Cable Vibration Using Spatially Measured Aerodynamic Coefficients. Advances in Structural Engineering, 2014, 17, 961-977.	2.4	4
285	Simulation of support settlement and cable slippage by using a long-span suspension bridge testbed. Structure and Infrastructure Engineering, 2017, 13, 401-415.	3.7	4
286	Modelling of distributed aerodynamic pressures on bridge decks based on proper orthogonal decomposition. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172, 181-195.	3.9	4
287	Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors. Smart Structures and Systems, 2015, 16, 981-1002.	1.9	4
288	Effects of Typhoon Sam on Di Wang Tower: Field Measurement. HKIE Transactions, 2000, 7, 41-48.	0.1	3

#	Article	IF	CITATIONS
289	<title>Buffeting of a long suspension bridge: analysis and field measurement</title> ., 2001, , .		3
290	Seismic control of adjacent buildings using fluid dampers., 2002,, 985-992.		3
291	Dynamic Analysis of Moving Road Vehicle under a Sudden Crosswind. Key Engineering Materials, 2003, 243-244, 141-146.	0.4	3
292	Active Platform for Suppressing Train-Induced Microvibration of High Tech Facilities. Key Engineering Materials, 2003, 243-244, 123-128.	0.4	3
293	Calibration of GPS for dynamic displacement measurement of long span cable-supported bridges in vertical direction., 2005,,.		3
294	Threeâ€dimensional vibration control of highâ€ŧech facilities against earthquakes and microvibration using hybrid platform. Earthquake Engineering and Structural Dynamics, 2010, 39, 615-634.	4.4	3
295	Generation of critical and compatible seismic ground acceleration time histories for high-tech facilities. Structural Engineering and Mechanics, 2007, 26, 687-707.	1.0	3
296	Dynamic analysis of wind-vehicle-bridge systems using mutually-affected aerodynamic parameters. Wind and Structures, an International Journal, 2015, 20, 191-211.	0.8	3
297	Conditional simulation of 3D nonstationary wind field for sea-crossing bridges. Advances in Structural Engineering, 2022, 25, 2508-2526.	2.4	3
298	Hilbert-huang transform for damping ratio identification of structures with closely spaced modes of vibration., 2002, , 1107-1114.		2
299	Buffeting Response Analysis of Stonecutters Bridge. HKIE Transactions, 2005, 12, 8-21.	0.1	2
300	Evaluation of ride comfort of road vehicles running on a cable-stayed bridge under crosswind. , 2002, , 857-864.		2
301	Experimental Study on Performance of Tuned Liquid Column Damper in Suppressing Pitching Vibration of Structures. Journal of Intelligent Material Systems and Structures, 1999, 10, 386-396.	2.5	2
302	Closure to "Windâ€Induced Fatigue Loading and Damage to Hip and Gable Roof Claddings―by Y. L. Xu. Journal of Structural Engineering, 1998, 124, 1093-1093.	3.4	1
303	Seismic response control of a complex structure using semi-active friction dampers. , 2004, , .		1
304	Hybrid control of microvibration of high-tech facility under horizontal and vertical ground motion. , 2004, 5391, 50.		1
305	Finite element-based force identification of sliding support systems: Part II—Numerical investigation. Finite Elements in Analysis and Design, 2006, 42, 249-282.	3.2	1
306	Seismic response control of a building complex utilizing passive friction damper: Analytical study. Structural Engineering and Mechanics, 2006, 22, 85-105.	1.0	1

#	Article	IF	Citations
307	PREDICTION OF DESIGN TYPHOON WIND SPEEDS AND PROFILES USING REFINED TYPHOON WIND FIELD MODEL., 2011,, 387-402.		1
308	Dynamic analysis of coupled train-bridge systems under fluctuating wind., 2002,, 889-896.		1
309	Tuned liquid column dampers with adaptive tuning capacity for structural vibration control. Structural Engineering and Mechanics, 2005, 20, 543-558.	1.0	1
310	Closure to "Windâ€Induced Fatigue Loading and Damage to Hip and Gable Roof Claddingsâ€by Y. L. Xu. Journal of Structural Engineering, 1997, 123, 1697-1697.	3.4	0
311	<title>Experimental investigation of structural pitching motion control by a tuned-liquid column damper</title> ., 1998, 3327, 474.		O
312	<title>Seismic response of adjacent buildings connected by active tendon devices</title> ., 1999, 3671, 217.		0
313	Seismic response control of multi-story buildings using semiactive friction dampers., 2002,, 993-1000.		0
314	Wind Direction Effect on Buffeting Response of a Long-span Bridge., 2004,, 232.		0
315	Application of HHT method to system identification of Di Wang Building during Typhoon York. , 2002, , 1115-1122.		О
316	Hybrid platform for high tech equipment against traffic-induced vibration., 2002,, 977-984.		0
317	Rivulet Formation on an Inclined Cylinder and Its Effects on the Near-Wake. , 2002, , .		O
318	Modal parameter identification of Tsing Ma Bridge during Typhoon Victor., 2002,, 897-904.		0
319	Comparison of buffeting response of a suspension bridge between analysis and aeroelastic test., 2002, , 865-872.		О
320	INTEGRATION OF GPS WITH ACCELEROMETER FOR MEASURING TOTAL DISPLACEMENT RESPONSE OF TALL BUILDINGS. , 2005, , .		0
321	VARIABLE FRICTION DAMPERS FOR EARTHQUAKE PROTECTION OF COUPLED BUILDING STRUCTURES., 2005,,		О
322	Dynamic Interaction between Towers and Cables of a Long Suspension Bridge During Construction. , 1996, , 505-512.		0
323	Wind Charateristics and Response of Tsing Ma Bridge During Typhoon Victor., 1999,, 497-504.		0
324	Galloping of Cables with Moving Rivulet. , 1999, , 873-880.		0

#	Article	IF	CITATIONS
325	Research of earthquake engineering in Hong Kong: current status and future challenge. , 2017, , 77-99.		0
326	Dynamic characteristics and seismic response of adjacent buildings linked by discrete dampers. Earthquake Engineering and Structural Dynamics, 1999, 28, 1163-1185.	4.4	0