
Paul Forsythe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3094410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ingestion of <i>Lactobacillus</i> strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16050-16055.	3.3	2,811
2	Mood and gut feelings. Brain, Behavior, and Immunity, 2010, 24, 9-16.	2.0	385
3	Vagal Pathways for Microbiome-Brain-Gut Axis Communication. Advances in Experimental Medicine and Biology, 2014, 817, 115-133.	0.8	382
4	<i>Lactobacillus reuteri</i> –induced Regulatory T cells Protect against an Allergic Airway Response in Mice. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 186-193.	2.5	335
5	Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nature Communications, 2017, 8, 15062.	5.8	329
6	<i>Lactobacillus reuteri</i> enhances excitability of colonic AH neurons by inhibiting calciumâ€dependent potassium channel opening. Journal of Cellular and Molecular Medicine, 2009, 13, 2261-2270.	1.6	294
7	Oral Treatment with LiveLactobacillus reuteriInhibits the Allergic Airway Response in Mice. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 561-569.	2.5	289
8	Voices from within: gut microbes and the CNS. Cellular and Molecular Life Sciences, 2013, 70, 55-69.	2.4	288
9	Live Lactobacillus reuteri Is Essential for the Inhibitory Effect on Tumor Necrosis Factor Alpha-Induced Interleukin-8 Expression. Infection and Immunity, 2004, 72, 5308-5314.	1.0	247
10	Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology, 2016, 63, 217-227.	1.3	247
11	Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. NeuroImage, 2016, 125, 988-995.	2.1	218
12	Microbiota and the gut–brain axis. Nutrition Reviews, 2015, 73, 28-31.	2.6	191
13	Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Medicine, 2017, 15, 7.	2.3	170
14	Antibiotics in early life: dysbiosis and the damage done. FEMS Microbiology Reviews, 2018, 42, 489-499.	3.9	152
15	Immunomodulation by Commensal and Probiotic Bacteria. Immunological Investigations, 2010, 39, 429-448.	1.0	144
16	Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB Journal, 2015, 29, 684-695.	0.2	139
17	Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nature Communications, 2013, 4, 1465.	5.8	127
18	Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis?. BMC Medicine, 2016, 14, 58.	2.3	117

PAUL FORSYTHE

#	Article	IF	CITATIONS
19	On communication between gut microbes and the brain. Current Opinion in Gastroenterology, 2012, 28, 557-562.	1.0	108
20	Probiotics and Lung Diseases. Chest, 2011, 139, 901-908.	0.4	101
21	Opposing Effects of Short- and Long-term Stress on Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 220-226.	2.5	95
22	The Mast Cell-Nerve Functional Unit: A Key Component of Physiologic and Pathophysiologic Responses. Chemical Immunology and Allergy, 2012, 98, 196-221.	1.7	88
23	Mast Cells in Neuroimmune Interactions. Trends in Neurosciences, 2019, 42, 43-55.	4.2	87
24	The vagus nerve modulates BDNF expression and neurogenesis in the hippocampus. European Neuropsychopharmacology, 2018, 28, 307-316.	0.3	86
25	Posttraumatic Stress Disorder: Does the Gut Microbiome Hold the Key?. Canadian Journal of Psychiatry, 2016, 61, 204-213.	0.9	75
26	The vagus nerve modulates CD4+ T cell activity. Brain, Behavior, and Immunity, 2010, 24, 316-323.	2.0	71
27	Oral selective serotonin reuptake inhibitors activate vagus nerve dependent gut-brain signalling. Scientific Reports, 2019, 9, 14290.	1.6	67
28	Mast cells and nitric oxide: control of production, mechanisms of response. International Immunopharmacology, 2001, 1, 1525-1541.	1.7	66
29	Mechanical stress-induced mast cell degranulation activates TGF-β1 signalling pathway in pulmonary fibrosis. Thorax, 2019, 74, 455-465.	2.7	63
30	Fucosylated but Not Sialylated Milk Oligosaccharides Diminish Colon Motor Contractions. PLoS ONE, 2013, 8, e76236.	1.1	60
31	Human Milk Oligosaccharides Attenuate Antigen–Antibody Complex Induced Chemokine Release from Human Intestinal Epithelial Cell Lines. Journal of Food Science, 2018, 83, 499-508.	1.5	48
32	Antibiotics and the nervous system: More than just the microbes?. Brain, Behavior, and Immunity, 2019, 77, 7-15.	2.0	46
33	A Budding Relationship: Bacterial Extracellular Vesicles in the Microbiota-Gut-Brain Axis. International Journal of Molecular Sciences, 2020, 21, 8899.	1.8	45
34	Inhibition of Calpain Is a Component of Nitric Oxide-Induced Down-Regulation of Human Mast Cell Adhesion. Journal of Immunology, 2003, 170, 287-293.	0.4	39
35	A Lactobacillus rhamnosus Strain Induces a Heme Oxygenase Dependent Increase in Foxp3+ Regulatory T Cells. PLoS ONE, 2012, 7, e47556.	1.1	38
36	Systemic Effects of Ingested Lactobacillus Rhamnosus: Inhibition of Mast Cell Membrane Potassium (IKCa) Current and Degranulation. PLoS ONE, 2012, 7, e41234.	1.1	38

PAUL FORSYTHE

#	Article	IF	CITATIONS
37	Probiotics and Lung Immune Responses. Annals of the American Thoracic Society, 2014, 11, S33-S37.	1.5	35
38	Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response. Neuropharmacology, 2021, 195, 108682.	2.0	34
39	Vagotomy and insights into the microbiota-gut-brain axis. Neuroscience Research, 2021, 168, 20-27.	1.0	33
40	The vagus nerve is necessary for the rapid and widespread neuronal activation in the brain following oral administration of psychoactive bacteria. Neuropharmacology, 2020, 170, 108067.	2.0	31
41	CD4+CD25+ T Cells are Essential for Behavioral Effects of Lactobacillus rhamnosus JB-1 in Male BALB/c mice. Brain, Behavior, and Immunity, 2020, 88, 451-460.	2.0	30
42	Disruptive physiology: olfaction and the microbiome–gut–brain axis. Biological Reviews, 2018, 93, 390-403.	4.7	27
43	Antibiotic Driven Changes in Gut Motility Suggest Direct Modulation of Enteric Nervous System. Frontiers in Neuroscience, 2017, 11, 588.	1.4	21
44	Microbes taming mast cells: Implications for allergic inflammation and beyond. European Journal of Pharmacology, 2016, 778, 169-175.	1.7	20
45	CCR3. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 405-409.	1.4	19
46	The Parasympathetic Nervous System as a Regulator of Mast Cell Function. Methods in Molecular Biology, 2015, 1220, 141-154.	0.4	19
47	Sex-Dependent Differences in Spontaneous Autoimmunity in Adult 3xTg-AD Mice. Journal of Alzheimer's Disease, 2018, 63, 1191-1205.	1.2	18
48	The Role of Tryptophan-Kynurenine in Feather Pecking in Domestic Chicken Lines. Frontiers in Veterinary Science, 2019, 6, 209.	0.9	15
49	The Nervous System as a Critical Regulator of Immune Responses Underlying Allergy. Current Pharmaceutical Design, 2012, 18, 2290-2304.	0.9	14
50	Sex dependent effects of post-natal penicillin on brain, behavior and immune regulation are prevented by concurrent probiotic treatment. Scientific Reports, 2020, 10, 10318.	1.6	11
51	Ingestion of Lactobacillus rhamnosus modulates chronic stress-induced feather pecking in chickens. Scientific Reports, 2021, 11, 17119.	1.6	11
52	L. rhamnosus improves the immune response and tryptophan catabolism in laying hen pullets. Scientific Reports, 2021, 11, 19538.	1.6	11
53	Increased persistence of avoidance behaviour and social deficits with L.rhamnosus JB-1 or selective serotonin reuptake inhibitor treatment following social defeat. Scientific Reports, 2020, 10, 13485.	1.6	10
54	Acute tryptophan depletion: the first method validation in an avian species (Gallus gallus domesticus). Poultry Science, 2017, 96, 3021-3025.	1.5	8

PAUL FORSYTHE

#	Article	IF	CITATIONS
55	Microbiota and behaviour: visiting the sins of the mother. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 502-504.	8.2	7
56	Effects of Acute Tryptophan Depletion on Repetitive Behavior in Laying Hens. Frontiers in Veterinary Science, 2019, 6, 230.	0.9	7
57	Differential effects of chronic immunosuppression on behavioral, epigenetic, and Alzheimer's disease-associated markers in 3xTg-AD mice. Alzheimer's Research and Therapy, 2021, 13, 30.	3.0	7
58	The bacterial quorum-sensing molecule, N-3-oxo-dodecanoyl-l-homoserine lactone, inhibits mediator release and chemotaxis of murine mast cells. Inflammation Research, 2017, 66, 259-268.	1.6	6
59	Cecal motility and the impact of Lactobacillus in feather pecking laying hens. Scientific Reports, 2020, 10, 12978.	1.6	6
60	<i>Limosilactobacillus reuteri</i> DSMâ€17938 for preventing cough in adults with mild allergic asthma: A doubleâ€blind randomized placeboâ€controlled crossâ€over study. Clinical and Experimental Allergy, 2021, 51, 1133-1143.	1.4	6
61	Gut microbes as modulators of the neuro-immuno-endocrine system. PharmaNutrition, 2013, 1, 115-122.	0.8	3
62	The Microbiome–Gut–Brain Axis and the Consequences of Infection and Dysbiosis. American Journal of Gastroenterology Supplements (Print), 2016, 3, 33-40.	0.7	3
63	Regulatory T Cell Modulation by Lactobacillus rhamnosus Improves Feather Damage in Chickens. Frontiers in Veterinary Science, 2022, 9, 855261.	0.9	2
64	Probiotics in Neurology and Psychiatry. , 0, , 285-298.		1
65	Probiotics in United Airways Disease: Response. Chest, 2011, 140, 1100-1101.	0.4	0
66	Immune to fear: With a little help from old friends. Brain, Behavior, and Immunity, 2019, 79, 8-9.	2.0	0
67	Nutraceutical Regulation of the Neuroimmunoendocrine Super-system. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 415-437.	0.2	Ο