R Bruce Lennox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3094407/publications.pdf

Version: 2024-02-01

99 papers

6,525 citations

45 h-index 80 g-index

99 all docs 99 docs citations 99 times ranked 7627 citing authors

#	Article	IF	CITATIONS
1	Catalytic hydrogenation of CO ₂ from air <i>via</i> porous silica-supported Au nanoparticles in aqueous solution. Green Chemistry, 2021, 23, 3740-3749.	9.0	13
2	Insight into the Role of Ag in the Seed-Mediated Growth of Gold Nanorods: Implications for Biomedical Applications. ACS Applied Nano Materials, 2021, 4, 3790-3798.	5.0	10
3	Model-free description of polymer-coated gold nanoparticle dynamics in aqueous solutions obtained by Bayesian analysis of neutron spin echo data. Physical Review E, 2019, 99, 052504.	2.1	16
4	Microcontact Printing Patterning of an HOPG Surface by an Inverse Electron Demand Diels–Alder Reaction. Chemistry - A European Journal, 2018, 24, 8904-8909.	3.3	0
5	Single wall carbon nanotube (SWCNT)–gold nanorod (AuNR) conjugates via thermally-mild reaction conditions. New Journal of Chemistry, 2017, 41, 12392-12396.	2.8	5
6	Nanopatterning Gold by Templated Solid State Dewetting on the Silica Warp and Weft of Diatoms. Journal of Nanomaterials, 2016, 2016, 1-11.	2.7	2
7	Lipid Microdomains in Synapse Formation. ACS Chemical Neuroscience, 2016, 7, 833-841.	3.5	5
8	Selective <i>in situ</i> potential-assisted SAM formation on multi electrode arrays. Nanotechnology, 2016, 27, 455501.	2.6	6
9	Controlling C ₆₀ Organization through Dipole-Induced Band Alignment at Self-Assembled Monolayer Interfaces. Chemistry of Materials, 2016, 28, 8322-8329.	6.7	8
10	Hydrogen bonding vs. molecule–surface interactions in 2D self-assembly of [C60]fullerenecarboxylic acids. Nanoscale, 2016, 8, 16955-16962.	5.6	11
11	Tridentate benzylthiols on Au(111): control of self-assembly geometry. Nanoscale, 2015, 7, 5014-5022.	5.6	7
12	Synthesis of 3-chloro-6-((4-(di-tert-butyl[$<$ sup $>$ 18 $<$ /sup $>$ F]fluorosilyl)-benzyl)oxy)-1,2,4,5-tetrazine ([$<$ sup $>$ 18 $<$ /sup $>$ F-radiolabeling. Chemical Communications, 2015, 51, 12415-12418.	4.1	27
13	Characterization of a gold coated cantilever surface for biosensing applications. EPJ Techniques and Instrumentation, $2015, 2, 1$.	1.3	38
14	Interfacing Living Cells and Spherically Supported Bilayer Lipid Membranes. Langmuir, 2015, 31, 4704-4712.	3.5	9
15	High thermal stability of block copolymer-capped Au and Cu nanoparticles. Chemical Communications, 2014, 50, 11919-11921.	4.1	12
16	Directing the Assembly of Gold Nanoparticles with Two-Dimensional Molecular Networks. ACS Nano, 2014, 8, 2214-2222.	14.6	32
17	Facile Covalent Modification of a Highly Ordered Pyrolytic Graphite Surface via an Inverse Electron Demand Diels–Alder Reaction under Ambient Conditions. Chemistry of Materials, 2014, 26, 5058-5062.	6.7	25
18	Rapid ¹⁸ F-Labeling and Loading of PEGylated Gold Nanoparticles for in Vivo Applications. Bioconjugate Chemistry, 2014, 25, 1143-1150.	3.6	53

#	Article	IF	CITATIONS
19	Chemical modification of single walled carbon nanotubes with tetrazine-tethered gold nanoparticles via a Diels–Alder reaction. Chemical Communications, 2013, 49, 10275.	4.1	37
20	A Molecular and Thermodynamic View of the Assembly of Gold Nanoparticles in Nematic Liquid Crystal. Langmuir, 2013, 29, 1258-1263.	3.5	27
21	An Electrochemically Controlled Microcantilever Biosensor. Langmuir, 2013, 29, 9951-9957.	3.5	16
22	Facile Phase Transfer of Large, Water-Soluble Metal Nanoparticles to Nonpolar Solvents. Langmuir, 2012, 28, 2909-2913.	3.5	44
23	Oxidation of Gold Nanoparticles by Au(III) Complexes in Toluene. Journal of Physical Chemistry C, 2012, 116, 14096-14102.	3.1	9
24	Reversible long range network formation in gold nanoparticle - nematic liquid crystal composites. Soft Matter, 2012, 8, 173-179.	2.7	71
25	Reversible long-range patterning of gold nanoparticles by smectic liquid crystals. Soft Matter, 2012, 8, 6593.	2.7	50
26	Preparation of Water-Soluble Maleimide-Functionalized 3 nm Gold Nanoparticles: A New Bioconjugation Template. Langmuir, 2012, 28, 5508-5512.	3.5	42
27	Label-Free Visualization of Ultrastructural Features of Artificial Synapses via Cryo-EM. ACS Chemical Neuroscience, 2011, 2, 700-704.	3.5	5
28	Synthesis of Porous Metallic Monoliths via Chemical Reduction of Au(I) and Ag(I) Nanostructured Sheets. Chemistry of Materials, 2011, 23, 4954-4959.	6.7	20
29	Tuning the miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP reaction. Journal of Materials Chemistry, 2011, 21, 9043.	6.7	59
30	Electrochemical synthesis of $Ag(0)/Ag2S$ heterojunctions templated on pre-formed $Ag2S$ nanowires. Nanoscale, 2011, 3, 1838.	5.6	13
31	Switching Atomic Friction by Electrochemical Oxidation. Langmuir, 2011, 27, 2561-2566.	3.5	45
32	Potential Controlled Electrochemical Conversion of AgCN and Cu(OH)2 Nanofibers into Metal Nanoparticles, Nanoprisms, Nanofibers, and Porous Networks. ACS Applied Materials & Diterfaces, 2010, 2, 3745-3758.	8.0	5
33	Lipid Bilayer Membrane-Triggered Presynaptic Vesicle Assembly. ACS Chemical Neuroscience, 2010, 1, 86-94.	3.5	17
34	1D Cu(OH) ₂ Nanomaterial Synthesis Templated in Water Microdroplets. Journal of the American Chemical Society, 2010, 132, 6657-6659.	13.7	54
35	Isolation of Functional Presynaptic Complexes from CNS Neurons: A Cell-Free Preparation for the Study of Presynaptic Compartments <i>In Vitro</i> . ACS Chemical Neuroscience, 2010, 1, 535-541.	3.5	3
36	Characterization of Poly(ethylene oxide)-Capped Gold Nanoparticles in Water by Means of Transmission Electron Microscopy, Thermogravimetric Analysis, Mass Density, and Small Angle Scattering. Journal of Physical Chemistry C, 2010, 114, 6937-6943.	3.1	24

#	Article	IF	Citations
37	New Insights into Brustâ 'Schiffrin Metal Nanoparticle Synthesis. Journal of the American Chemical Society, 2010, 132, 9582-9584.	13.7	245
38	Supported Bilayers Formed from Different Phospholipids on Spherical Silica Substrates. Langmuir, 2009, 25, 5455-5458.	3.5	55
39	Rapid Assembly of Functional Presynaptic Boutons Triggered by Adhesive Contacts. Journal of Neuroscience, 2009, 29, 12449-12466.	3.6	80
40	Polymer Templated Synthesis of AgCN and Ag Nanowires. Chemistry of Materials, 2009, 21, 2020-2026.	6.7	47
41	Preparation and Characterization of Polyelectrolyte-Coated Gold Nanoparticles. Langmuir, 2008, 24, 2532-2538.	3.5	58
42	Polymer-capped gold nanoparticles by ligand-exchange reactions. Journal of Materials Chemistry, 2008, 18, 5830.	6.7	35
43	Ferrocenylalkylthiolate labeling of defects in alkylthiol self-assembled monolayers on gold. Physical Chemistry Chemical Physics, 2007, 9, 1013-1020.	2.8	26
44	The Wetting of Gold and Silicon Nanoscale Arrays. Langmuir, 2007, 23, 1619-1622.	3.5	5
45	Microcantilever-Based Sensors:  Effect of Morphology, Adhesion, and Cleanliness of the Sensing Surface on Surface Stress. Analytical Chemistry, 2007, 79, 8136-8143.	6.5	64
46	Electrochemical Desorption of n-Alkylthiol SAMs on Polycrystalline Gold:  Studies Using A Ferrocenylalkylthiol Probe. Langmuir, 2007, 23, 292-296.	3.5	49
47	Surface Plasmon Resonance of Gold Nanoparticle Arrays Partially Embedded in Quartz Substrates. Journal of Physical Chemistry C, 2007, 111, 3658-3664.	3.1	16
48	Ferrocenylalkylthiolates as a Probe of Heterogeneity in Binary Self-Assembled Monolayers on Gold. Langmuir, 2006, 22, 4438-4444.	3.5	145
49	Place Exchange Reactions of Alkyl Thiols on Gold Nanoparticles. Journal of the American Chemical Society, 2006, 128, 3476-3477.	13.7	112
50	Surface Plasmon Resonance Spectroscopy Study of Electrostatically Adsorbed Layers. Langmuir, 2006, 22, 4589-4593.	3.5	14
51	Uniform One-Dimensional Arrays of Tunable Gold Nanoparticles with Tunable Interparticle Distances. Chemistry of Materials, 2006, 18, 2628-2631.	6.7	45
52	4-(N,N-Dimethylamino)pyridine-Protected Au Nanoparticles:Â Versatile Precursors for Water- and Organic-Soluble Gold Nanoparticles. Chemistry of Materials, 2006, 18, 4674-4680.	6.7	79
53	Electric Field Driven Protonation/Deprotonation of Self-Assembled Monolayers of Acid-Terminated Thiols. Langmuir, 2006, 22, 4420-4428.	3.5	72
54	Adsorption of Alkylthiol-Capped Gold Nanoparticles onto Alkylthiol Self-Assembled Monolayers:  An SPR Study. Langmuir, 2006, 22, 1048-1054.	3.5	15

#	Article	IF	Citations
55	Assessment of 4-(Dimethylamino)pyridine as a Capping Agent for Gold Nanoparticles. Langmuir, 2005, 21, 6532-6539.	3 . 5	156
56	Synthesis of Gold Nanoparticles via Electroless Deposition in SBA-15. Chemistry of Materials, 2005, 17, 2481-2483.	6.7	55
57	Gold Nanoparticle/Polymer Nanocomposites:Â Dispersion of Nanoparticles as a Function of Capping Agent Molecular Weight and Grafting Density. Langmuir, 2005, 21, 6063-6072.	3 . 5	213
58	Preparation of Thiol-Capped Gold Nanoparticles by Chemical Reduction of Soluble Au(I)â^'Thiolates. Chemistry of Materials, 2005, 17, 5691-5696.	6.7	119
59	Gold Nanoparticles Generated by Electron Beam Lithography of Gold(I)â°'Thiolate Thin Films. Chemistry of Materials, 2005, 17, 5774-5779.	6.7	104
60	Monolayer/bilayer transition in Langmuir films of derivatized gold nanoparticles at the gas/water interface: An x-ray scattering study. Journal of Chemical Physics, 2004, 120, 3446-3459.	3.0	51
61	Polymer-Stabilized Gold Nanoparticles with High Grafting Densities. Langmuir, 2004, 20, 2867-2873.	3 . 5	266
62	Preparation of Nanoscale Au Islands in Patterned Arrays. Langmuir, 2003, 19, 9097-9100.	3.5	17
63	Enantiomeric Polylactides at the Airâ^'Water Interface: πâ^'Alsotherms and PM-IRRAS Studies of Enantiomers and Their Blend. Langmuir, 2003, 19, 333-340.	3.5	27
64	Self-Assembled Masks for the Transfer of Nanometer-Scale Patterns into Surfaces:  Characterization by AFM and LFM. Nano Letters, 2002, 2, 131-135.	9.1	31
65	Nanoscale Polypyrrole Patterns Using Block Copolymer Surface Micelles as Templates. Nano Letters, 2001, 1, 735-738.	9.1	79
66	Polymer-Stabilized Gold Nanoparticles and Their Incorporation into Polymer Matrices. Journal of the American Chemical Society, 2001, 123, 10411-10412.	13.7	379
67	Investigation of the Poly(I-lactide)/Poly(d-lactide) Stereocomplex at the Airâ^'Water Interface by Polarization Modulation Infrared Reflection Absorption Spectroscopy. Langmuir, 2001, 17, 5842-5849.	3 . 5	56
68	Goldâ^'Sulfur Bonding in 2D and 3D Self-Assembled Monolayers:  XPS Characterization. Journal of Physical Chemistry B, 2000, 104, 6562-6567.	2.6	329
69	Insulating Properties of Self-Assembled Monolayers Monitored by Impedance Spectroscopy. Langmuir, 2000, 16, 4222-4228.	3. 5	188
70	Potential-Induced Defects in n-Alkanethiol Self-Assembled Monolayers Monitored by Impedance Spectroscopy. Journal of Physical Chemistry B, 2000, 104, 9004-9010.	2.6	151
71	A Dynamic View of Self-Assembled Monolayers. Accounts of Chemical Research, 2000, 33, 475-481.	15.6	216
72	Selective Templated Growth of Polypyrrole Strands on Lipid Tubule Edges. Chemistry of Materials, 2000, 12, 1222-1228.	6.7	76

#	Article	IF	CITATIONS
73	Potential-Assisted Deposition of Alkanethiols on Au:Â Controlled Preparation of Single- and Mixed-Component SAMs. Langmuir, 2000, 16, 6188-6190.	3.5	97
74	Stability ofio-Functionalized Self-Assembled Monolayers as a Function of Applied Potential. Langmuir, 2000, 16, 7464-7470.	3.5	114
75	Patterned surfaces via self-assembly. Current Opinion in Colloid and Interface Science, 1999, 4, 52-59.	7.4	73
76	Polystyreneâ^Poly(ethylene oxide) Diblock Copolymers Form Well-Defined Surface Aggregates at the Air/Water Interface. Langmuir, 1999, 15, 7714-7718.	3.5	148
77	The Effect of Terminal Hydrogen Bonding on the Structure and Dynamics of Nanoparticle Self-Assembled Monolayers (SAMs): An NMR Dynamics Study. Advanced Materials, 1998, 10, 475-480.	21.0	51
78	Multiple morphologies of amphiphilic diblock copolymer micelles in two and three dimensions. Macromolecular Symposia, 1997, 118, 647-655.	0.7	9
79	Structure and Dynamics in Alkanethiolate Monolayers Self-Assembled on Gold Nanoparticles:Â A DSC, FT-IR, and Deuterium NMR Study. Journal of the American Chemical Society, 1997, 119, 2682-2692.	13.7	347
80	Selfâ€Assembled Monolayers on Gold Nanoparticles. Chemistry - A European Journal, 1996, 2, 359-363.	3.3	305
81	Halide Electrochemistry at a Deactivated Polypyrrole Thin Film Electrode. Langmuir, 1995, 11, 2303-2305.	3.5	0
82	Phase Transitions in Self-Assembled Monolayers Detected by Electrochemistry. Angewandte Chemie International Edition in English, 1994, 33, 2332-2335.	4.4	54
83	Elektrochemischer Nachweis von PhasenübergÃ ¤ gen in selbstaggregierten Monoschichten. Angewandte Chemie, 1994, 106, 2429-2431.	2.0	8
84	Synthesis and properties of new bisphosphatidylcholine lipids. Journal of the Chemical Society Chemical Communications, 1994, , 2043.	2.0	6
85	Block copolymer self-assembly in two dimensions: nanoscale emulsions and foams. Faraday Discussions, 1994, 98, 283.	3.2	32
86	An amperometric enzyme electrode for bile acids. Analytica Chimica Acta, 1993, 281, 655-661.	5.4	9
87	Electrochemistry of organic conducting salt electrodes: a unified mechanistic description. The Journal of Physical Chemistry, 1992, 96, 5641-5652.	2.9	26
88	A new reagent for the removal of the 4-methoxybenzyl ether: application to the synthesis of unusual macrocyclic and bolaform phosphatidylcholines Journal of Organic Chemistry, 1992, 57, 1777-1783.	3.2	97
89	Interfacial behavior of block polyelectrolytes. 4. Polymorphism of (quasi) two-dimensional micelles. The Journal of Physical Chemistry, 1992, 96, 4727-4730.	2.9	100
90	Fullerenes, C60 and C70 at the air-water interface. The Journal of Physical Chemistry, 1992, 96, 8149-8152.	2.9	51

R Bruce Lennox

#	Article	IF	CITATION
91	Electrochemical investigation of novel polymerizable thiophene/ferrocene conjugates. Langmuir, 1992, 8, 959-964.	3.5	31
92	Determination of ascorbic acid using an organic conducting salt electrode. Analytical Chemistry, 1992, 64, 147-151.	6.5	17
93	Pyrroloquinolinequinone enzyme electrode based on the coupling of methanol dehydrogenase to a tetrathiafulvalene-tetracyanoquinodimethane electrode. Analytical Chemistry, 1991, 63, 1174-1178.	6.5	47
94	Enhanced cyclization rates of large rings induced by a micellar environment. Langmuir, 1991, 7, 1336-1339.	3.5	12
95	Interfacial behavior of block polyelectrolytes. 1. Evidence for novel surface micelle formation. Journal of the American Chemical Society, 1991, 113, 5583-5588.	13.7	202
96	Interfacial behavior of block polyelectrolytes. 2. Aggregation numbers of surface micelles. Langmuir, 1991, 7, 1579-1584.	3.5	66
97	Rotating disc electrode characterization of immobilized glucose oxidase. Analytical Biochemistry, 1991, 195, 358-363.	2.4	19
98	Electrophilic bromination of micelle-associated alkenes as a probe of micelle structure. Journal of the American Chemical Society, 1986, 108, 3771-3781.	13.7	12
99	Structure and electrochemical properties of microfiltration filter-lipid membrane systems. Analytical Chemistry, 1982, 54, 76-81.	6.5	97