
## Seong Ku Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3094203/publications.pdf Version: 2024-02-01



SEONG KULLEE

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Enhancement of Electron Energy to the Multi-GeV Regime by a Dual-Stage Laser-Wakefield Accelerator<br>Pumped by Petawatt Laser Pulses. Physical Review Letters, 2013, 111, 165002.       | 7.8  | 323       |
| 2  | Stable generation of GeV-class electron beams from self-guided laser–plasma channels. Nature<br>Photonics, 2008, 2, 571-577.                                                             | 31.4 | 291       |
| 3  | Realization of laser intensity over 10 <sup>23</sup> W/cm <sup>2</sup> . Optica, 2021, 8, 630.                                                                                           | 9.3  | 240       |
| 4  | 42  PW, 20  fs Ti:sapphire laser at 01  Hz. Optics Letters, 2017, 42, 2058.                                                                                                              | 3.3  | 202       |
| 5  | Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses.<br>Physics of Plasmas, 2016, 23, .                                                 | 1.9  | 135       |
| 6  | Achieving the laser intensity of 55×10 <sup>22</sup> W/cm <sup>2</sup> with a wavefront-corrected multi-PW laser. Optics Express, 2019, 27, 20412.                                       | 3.4  | 103       |
| 7  | Transition of Proton Energy Scaling Using an Ultrathin Target Irradiated by Linearly Polarized<br>Femtosecond Laser Pulses. Physical Review Letters, 2013, 111, 165003.                  | 7.8  | 102       |
| 8  | Laser Acceleration of Highly Energetic Carbon lons Using a Double-Layer Target Composed of Slightly<br>Underdense Plasma and Ultrathin Foil. Physical Review Letters, 2019, 122, 014803. | 7.8  | 84        |
| 9  | Sub-10ÂfsÂpulseÂgenerationÂbyÂpost-compression for peak-power enhancement of a 100-TW Ti:Sapphire<br>laser. Optics Express, 2022, 30, 8734.                                              | 3.4  | 25        |
| 10 | Multi-GeV Laser Wakefield Electron Acceleration with PW Lasers. Applied Sciences (Switzerland), 2021, 11, 5831.                                                                          | 2.5  | 16        |
| 11 | Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles.<br>Scientific Reports, 2019, 9, 11249.                                                  | 3.3  | 10        |
| 12 | 5-Hz, 150-TW Ti:sapphire Laser with High Spatiotemporal Quality. Journal of the Korean Physical Society, 2020, 77, 223-228.                                                              | 0.7  | 10        |
| 13 | Single-shot spatiotemporal characterization of a multi-PW laser using a multispectral wavefront sensing method. Optics Express, 2021, 29, 19506.                                         | 3.4  | 10        |
| 14 | Fine phantom image from laser-induced proton radiography with a spatial resolution of several μm.<br>Journal of the Korean Physical Society, 2014, 65, 6-11.                             | 0.7  | 6         |
| 15 | Wavefront-corrected post-compression of a 100-TW Ti:sapphire laser. Optics Express, 2022, 30, 26212.                                                                                     | 3.4  | 5         |
| 16 | 0.1-Hz 1-PW Ti:Sapphire Laser Facility. , 2010, , .                                                                                                                                      |      | 2         |
| 17 | Nanoparticle-insertion scheme to decouple electron injection from laser evolution in laser wakefield acceleration. Scientific Reports, 2022, 12, .                                       | 3.3  | 2         |
| 18 | Optical damage evaluation of a CPA Ti:sapphire laser for the safe design of a PW system. , 2007, , .                                                                                     |      | 1         |

SEONG KU LEE

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Calibration of radiochromic EBT3 film using laser-accelerated protons. Review of Scientific Instruments, 2021, 92, 023302.                                          | 1.3 | 1         |
| 20 | Suppression of Phase Fluctuation of Phase-Controlled Stimulated Brillouin Scattering Beams by Self-generated Density Modulation. , 2007, , .                        |     | 0         |
| 21 | High-intensity laser-driven particle and electromagnetic wave sources for science, industry, and medicine. Frontiers of Optoelectronics in China, 2009, 2, 299-303. | 0.2 | 0         |
| 22 | Laser particle acceleration at relativistic laser intensity. , 2014, , .                                                                                            |     | 0         |