Guy Schoehn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3094065/publications.pdf

Version: 2024-02-01

186209 189801 2,858 55 28 50 citations h-index g-index papers 68 68 68 3748 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Helical Structures of ESCRT-III Are Disassembled by VPS4. Science, 2008, 321, 1354-1357.	6.0	309
2	Crystal Structure of the Rabies Virus Nucleoprotein-RNA Complex. Science, 2006, 313, 360-363.	6.0	299
3	DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist. PLoS Pathogens, 2021, 17, e1009576.	2.1	133
4	Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science, 2015, 348, 704-707.	6.0	131
5	Conformational transitions of the serotonin 5-HT3 receptor. Nature, 2018, 563, 275-279.	13.7	128
6	A Crescent-Shaped ALIX Dimer Targets ESCRT-III CHMP4 Filaments. Structure, 2009, 17, 843-856.	1.6	116
7	Charged Multivesicular Body Protein 2B (CHMP2B) of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) Polymerizes into Helical Structures Deforming the Plasma Membrane. Journal of Biological Chemistry, 2011, 286, 40276-40286.	1.6	95
8	The 12à Structure of Trypsin-treated Measles Virus N–RNA. Journal of Molecular Biology, 2004, 339, 301-312.	2.0	94
9	Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nature Communications, 2017, 8, 15885.	5.8	93
10	VPS4 triggers constriction and cleavage of ESCRT-III helical filaments. Science Advances, 2019, 5, eaau7198.	4.7	84
11	CM01: a facility for cryo-electron microscopy at the European Synchrotron. Acta Crystallographica Section D: Structural Biology, 2019, 75, 528-535.	1.1	83
12	Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex. Nature Communications, 2019, 10, 2697.	5.8	80
13	ESCRT-III CHMP2A and CHMP3 form variable helical polymers <i>in vitro</i> and act synergistically during HIV-1 budding. Cellular Microbiology, 2013, 15, 213-226.	1.1	78
14	Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection. Nature Communications, 2017, 8, 1953.	5.8	64
15	Structure of the Fiber Head of Ad3, a Non-CAR-Binding Serotype of Adenovirus. Virology, 2001, 285, 302-312.	1.1	62
16	Structure and function of ESCRT-III. Biochemical Society Transactions, 2009, 37, 156-160.	1.6	61
17	MAP6 is an intraluminal protein that induces neuronal microtubules to coil. Science Advances, 2020, 6, eaaz4344.	4.7	56
18	RIP2 filament formation is required for NOD2 dependent NF-κB signalling. Nature Communications, 2018, 9, 4043.	5.8	55

#	Article	IF	CITATION
19	Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nature Communications, 2021, 12, 1049.	5.8	51
20	Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA-OprM chaperone-like complex. Nature Communications, 2020, 11, 4948.	5.8	45
21	Structural investigation of a chaperonin in action reveals how nucleotide binding regulates the functional cycle. Science Advances, 2018, 4, eaau4196.	4.7	44
22	Characterization of a TET-like Aminopeptidase Complex from the Hyperthermophilic ArchaeonPyrococcus horikoshiiâ€. Biochemistry, 2005, 44, 3477-3486.	1.2	42
23	Selfâ€Assembly of Measles Virus Nucleocapsidâ€like Particles: Kinetics and RNA Sequence Dependence. Angewandte Chemie - International Edition, 2016, 55, 9356-9360.	7.2	41
24	Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor. Neuron, 2022, 110, 1358-1370.e5.	3.8	39
25	Structural Similarity of Secretins from Type II and Type III Secretion Systems. Structure, 2014, 22, 1348-1355.	1.6	36
26	Pre-initiation and elongation structures of full-length La Crosse virus polymerase reveal functionally important conformational changes. Nature Communications, 2020, 11, 3590.	5.8	36
27	Structure, dynamics and phase separation of measles virus RNA replication machinery. Current Opinion in Virology, 2020, 41, 59-67.	2.6	36
28	Assembly and cryo-EM structures of RNA-specific measles virus nucleocapsids provide mechanistic insight into paramyxoviral replication. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4256-4264.	3.3	35
29	Structure, function and assembly of the long, flexible tail of siphophages. Current Opinion in Virology, 2020, 45, 34-42.	2.6	33
30	Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles. Nanoscale, 2017, 9, 9641-9658.	2.8	31
31	Cryo-Electron Microscopy Three-Dimensional Structure of the Jumbo Phage \hat{l}^{\dagger}_{l} RSL1 Infecting the Phytopathogen Ralstonia solanacearum. Structure, 2013, 21, 298-305.	1.6	29
32	Unraveling self-assembly pathways of the 468-kDa proteolytic machine TET2. Science Advances, 2017, 3, e1601601.	4.7	28
33	High resolution cryo-EM structure of the helical RNA-bound Hantaan virus nucleocapsid reveals its assembly mechanisms. ELife, 2019, 8, .	2.8	28
34	Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter. Science Advances, 2022, 8, eabg9215.	4.7	27
35	Impact of Human Adenovirus Type 3 Dodecahedron on Host Cells and Its Potential Role in Viral Infection. Journal of Virology, 2012, 86, 5380-5385.	1.5	26
36	CryoEM structure of adenovirus type 3 fibre with desmoglein 2 shows an unusual mode of receptor engagement. Nature Communications, 2019, 10, 1181.	5.8	24

#	Article	IF	CITATIONS
37	Structural snapshots of La Crosse virus polymerase reveal the mechanisms underlying Peribunyaviridae replication and transcription. Nature Communications, 2022, 13, 902.	5.8	23
38	Structure and assembly of pilotin-dependent and -independent secretins of the type II secretion system. PLoS Pathogens, 2019, 15, e1007731.	2.1	22
39	The Binding of Palonosetron and Other Antiemetic Drugs to the Serotonin 5-HT3 Receptor. Structure, 2020, 28, 1131-1140.e4.	1.6	20
40	Binding of RNA by the Nucleoproteins of Influenza Viruses A and B. Viruses, 2016, 8, 247.	1.5	17
41	The structure of the nucleoprotein of Influenza D shows that all Orthomyxoviridae nucleoproteins have a similar NPCORE, with or without a NPTAIL for nuclear transport. Scientific Reports, 2019, 9, 600.	1.6	17
42	The tripartite capsid gene of Salmonella phage Gifsy-2 yields a capsid assembly pathway engaging features from HK97 and \hat{l} ». Virology, 2010, 402, 355-365.	1.1	15
43	Self-association of MreC as a regulatory signal in bacterial cell wall elongation. Nature Communications, 2021, 12, 2987.	5.8	13
44	Structural Analysis of Jumbo Coliphage phAPEC6. International Journal of Molecular Sciences, 2020, 21, 3119.	1.8	13
45	pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils. Nature Communications, 2022, 13, .	5.8	9
46	Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals. Acta Crystallographica Section D: Structural Biology, 2021, 77, 75-85.	1.1	8
47	3D structure of three jumbo phage heads. Journal of General Virology, 2020, 101, 1219-1226.	1.3	8
48	How Reversible Are the Effects of Fumed Silica on Macrophages? A Proteomics-Informed View. Nanomaterials, 2020, 10, 1939.	1.9	7
49	Binding Mechanism Elucidation of the Acute Respiratory Disease Causing Agent Adenovirus of Serotype 7 to Desmoglein-2. Viruses, 2020, 12, 1075.	1.5	7
50	Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Reports Medicine, 2022, 3, 100528.	3.3	6
51	Structural basis for the inhibition of IAPP fibril formation by the co-chaperonin prefoldin. Nature Communications, 2022, 13, 2363.	5.8	5
52	Immediate and Sustained Effects of Cobalt and Zinc-Containing Pigments on Macrophages. Frontiers in Immunology, 0, 13 , .	2.2	5
53	Minimal nanodisc without exogenous lipids for stabilizing membrane proteins in detergent-free buffer. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 852-860.	1.4	3
54	High Resolution Structure of the Mature Capsid of Ralstonia solanacearum Bacteriophage ϕRSA1 by Cryo-Electron Microscopy. International Journal of Molecular Sciences, 2021, 22, 11053.	1.8	3

#	Article	IF	CITATIONS
55	Oxygen-Sensitive Metalloprotein Structure Determination by Cryo-Electron Microscopy. Biomolecules, 2022, 12, 441.	1.8	2