
Liu Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3093525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-supported MoO2/MoS2 nano-sheets embedded in a carbon cloth as a binder-free substrate for high-energy lithium–sulfur batteries. Electrochimica Acta, 2021, 367, 137482.	5.2	24
2	An Artificial Protective Coating toward Dendriteâ€Free Lithiumâ€Metal Anodes for Lithium–Sulfur Batteries. Energy Technology, 2020, 8, 2000348.	3.8	19
3	<i>In-Situ</i> Assembled VS ₄ as a Polysulfide Mediator for High-Loading Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 1177-1185.	17.4	120
4	A 3D Lithiophilic Mo ₂ Nâ€Modified Carbon Nanofiber Architecture for Dendriteâ€Free Lithiumâ€Metal Anodes in a Full Cell. Advanced Materials, 2019, 31, e1904537.	21.0	139
5	A three-dimensional self-assembled SnS ₂ -nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 7659-7667.	10.3	95
6	TiS ₂ –Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium–Sulfur Batteries. ACS Energy Letters, 2018, 3, 568-573.	17.4	138
7	Longâ€Life Lithium–Sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires. Advanced Materials, 2018, 30, e1804149.	21.0	120
8	Rational Design of a Dualâ€Function Hybrid Cathode Substrate for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1801014.	19.5	103
9	Rational Design of High-Loading Sulfur Cathodes with a Poached-Egg-Shaped Architecture for Long-Cycle Lithium–Sulfur Batteries. ACS Energy Letters, 2017, 2, 2205-2211.	17.4	67
10	Yolk–Shelled C@Fe ₃ O ₄ Nanoboxes as Efficient Sulfur Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1702707.	21.0	455
11	A nickel-foam@carbon-shell with a pie-like architecture as an efficient polysulfide trap for high-energy Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 15002-15007.	10.3	44
12	A trifunctional multi-walled carbon nanotubes/polyethylene glycol (MWCNT/PEG)-coated separator through a layer-by-layer coating strategy for high-energy Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 16805-16811.	10.3	72
13	In Situ "Clickable―Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation. ACS Applied Materials & Interfaces, 2016, 8, 4442-4455.	8.0	91
14	Janus composite nanoparticle-incorporated mixed matrix membranes for CO 2 separation. Journal of Membrane Science, 2015, 489, 1-10.	8.2	62