Jane E Carland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3092862/publications.pdf

Version: 2024-02-01

		430442	414034
56	1,189	18	32
papers	citations	h-index	g-index
		F-7	1260
57	57	57	1269
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Experiences of Australian women on returning to work after miscarriage. Community, Work and Family, 2023, 26, 258-267.	1.5	2
2	Would they accept it? An interview study to identify barriers and facilitators to user acceptance of a prescribing advice service. BMC Health Services Research, 2022, 22, 514.	0.9	3
3	Australian hospital outpatient pharmacies: service adaptations during the 2020 national coronavirus disease 2019 lockdown. Journal of Pharmacy Practice and Research, 2022, 52, 326-328.	0.5	3
4	Would they trust it? An exploration of psychosocial and environmental factors affecting prescriber acceptance of computerised doseâ€recommendation software. British Journal of Clinical Pharmacology, 2021, 87, 1215-1233.	1.1	14
5	Rebranding Gout: Could a Name Change for Gout Improve Adherence to Urate-Lowering Therapy?. Therapeutic Innovation and Regulatory Science, 2021, 55, 138-141.	0.8	2
6	A Model Averaging/Selection Approach Improves the Predictive Performance of Modelâ€Informed Precision Dosing: Vancomycin as a Case Study. Clinical Pharmacology and Therapeutics, 2021, 109, 175-183.	2.3	42
7	Evaluation of a Pilot Vancomycin Precision Dosing Advisory Service on Target Exposure Attainment Using an Interrupted Time Series Analysis. Clinical Pharmacology and Therapeutics, 2021, 109, 212-221.	2.3	16
8	Evaluation of amikacin use and comparison of the models implemented in two Bayesian forecasting software packages to guide dosing. British Journal of Clinical Pharmacology, 2021, 87, 1422-1431.	1.1	6
9	Accuracy of documented administration times for intravenous antimicrobial drugs and impact on dosing decisions. British Journal of Clinical Pharmacology, 2021, 87, 4273-4282.	1.1	11
10	Are vancomycin dosing guidelines followed? A mixed methods study of vancomycin prescribing practices. British Journal of Clinical Pharmacology, 2021, 87, 4221-4229.	1.1	16
11	Factors Determining Medical Students' Experience in an Independent Research Year During the Medical Program. Medical Science Educator, 2021, 31, 1471-1478.	0.7	6
12	Tacrolimus Therapy in Adult Heart Transplant Recipients. Therapeutic Drug Monitoring, 2021, Publish Ahead of Print, 736-746.	1.0	3
13	Evaluation of published population pharmacokinetic models to inform tacrolimus dosing in adult heart transplant recipients. British Journal of Clinical Pharmacology, 2021, , .	1.1	3
14	Education to improve vancomycin use: the perspectives of educators and education recipients. Internal Medicine Journal, 2020, 50, 565-572.	0.5	10
15	Researchers' views on, and experiences with, the requirement to obtain informed consent in research involving human participants: a qualitative study. BMC Medical Ethics, 2020, 21, 93.	1.0	18
16	Population Pharmacokinetic Models of Tacrolimus in Adult Transplant Recipients: A Systematic Review. Clinical Pharmacokinetics, 2020, 59, 1357-1392.	1.6	29
17	Assessing the accuracy of two Bayesian forecasting programs in estimating vancomycin drug exposure. Journal of Antimicrobial Chemotherapy, 2020, 75, 3293-3302.	1.3	18
18	A pharmacokineticâ€pharmacodynamic study of a single dose of febuxostat in healthy subjects. British Journal of Clinical Pharmacology, 2020, 86, 2486-2496.	1.1	4

#	Article	IF	Citations
19	The safety and pharmacokinetics of metformin in patients with chronic liver disease. Alimentary Pharmacology and Therapeutics, 2020, 51, 565-575.	1.9	12
20	Voriconazole: an audit of hospital-based dosing and monitoring and evaluation of the predictive performance of a dose-prediction software package. Journal of Antimicrobial Chemotherapy, 2020, 75, 1981-1984.	1.3	10
21	Patients' use of mobile health applications: what general practitioners think. Family Practice, 2019, 36, 214-218.	0.8	38
22	Is the use of metformin in patients undergoing dialysis hazardous for life? A systematic review of the safety of metformin in patients undergoing dialysis. British Journal of Clinical Pharmacology, 2019, 85, 2772-2783.	1.1	11
23	Determination of febuxostat in human plasma by high performance liquid chromatography (HPLC) with fluorescence-detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1126-1127, 121764.	1.2	7
24	Management of gout in older people. Journal of Pharmacy Practice and Research, 2019, 49, 90-97.	0.5	5
25	Comparison of the Area Under the Curve for Vancomycin Estimated Using Compartmental and Noncompartmental Methods in Adult Patients With Normal Renal Function. Therapeutic Drug Monitoring, 2019, 41, 726-731.	1.0	11
26	Molecular Determinants for Substrate Interactions with the Glycine Transporter GlyT2. ACS Chemical Neuroscience, 2018, 9, 603-614.	1.7	30
27	Lactic Acidosis, Metformin Use, and Dose-Response Association. JAMA Internal Medicine, 2018, 178, 1428.	2.6	0
28	Clinical Pharmacokinetics in Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 1085-1095.	2.2	142
29	Barriers and facilitators of appropriate vancomycin use: prescribing context is key. European Journal of Clinical Pharmacology, 2018, 74, 1523-1529.	0.8	15
30	Clinical Pharmacokinetics in Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 1254-1263.	2.2	59
31	Usability of Reports Generated by a Computerised Dose Prediction Software. Studies in Health Technology and Informatics, 2018, 252, 27-32.	0.2	5
32	Allopurinol: insights from studies of dose–response relationships. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 449-462.	1.5	21
33	Synthesis and Characterization of Novel Acyl-Glycine Inhibitors of GlyT2. ACS Chemical Neuroscience, 2017, 8, 1949-1959.	1.7	29
34	Could metformin be used in patients with advanced chronic kidney disease?. Diabetes, Obesity and Metabolism, 2017, 19, 302-303.	2.2	1
35	Glycine transporter2 inhibitors: Getting the balance right. Neurochemistry International, 2016, 98, 89-93.	1.9	20
36	Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2. PLoS ONE, 2016, 11, e0157583.	1.1	28

#	Article	IF	Citations
37	A Hydrophobic Area of the GABA il Receptor Containing Phenylalanine 124 Influences Both Receptor Activation and Deactivation. Journal of Molecular Neuroscience, 2015, 55, 305-313.	1.1	O
38	Molecular Basis for Substrate and Inhibitor Interactions with the Glycine Transporter, GlyT2. FASEB Journal, 2015, 29, 566.6.	0.2	0
39	Glycine transport inhibitors for the treatment of pain. Trends in Pharmacological Sciences, 2014, 35, 423-430.	4.0	69
40	Lipid inhibitors of high affinity glycine transporters: Identification of a novel class of analgesics. Neurochemistry International, 2014, 73, 211-216.	1.9	15
41	Oleoylâ€∢scp>lâ€carnitine inhibits glycine transport by <scp>G</scp> ly <scp>T</scp> 2. British Journal of Pharmacology, 2013, 168, 891-902.	2.7	30
42	Mutagenic Analysis of the Intracellular Portals of the Human 5-HT3A Receptor. Journal of Biological Chemistry, 2013, 288, 31592-31601.	1.6	14
43	Differentiating Enantioselective Actions of GABOB: A Possible Role for Threonine 244 in the Binding Site of GABA _C Ï ₁ Receptors. ACS Chemical Neuroscience, 2012, 3, 665-673.	1.7	8
44	Structurally Diverse GABA Antagonists Interact Differently with Open and Closed Conformational States of the Ï ₁ Receptor. ACS Chemical Neuroscience, 2012, 3, 293-301.	1.7	13
45	Anion selectivity and counterâ€ion cation permeation in glycine receptorâ€channels. FASEB Journal, 2012, 26, 901.2.	0.2	0
46	External divalent cations increase anion–cation permeability ratio in glycine receptor channels. Pflugers Archiv European Journal of Physiology, 2010, 460, 131-152.	1.3	6
47	Novel structural determinants of single channel conductance and ion selectivity in 5-hydroxytryptamine type 3 and nicotinic acetylcholine receptors. Journal of Physiology, 2010, 588, 587-596.	1.3	41
48	Characterization of the Effects of Charged Residues in the Intracellular Loop on Ion Permeation in $\hat{l}\pm 1$ Glycine Receptor Channels. Journal of Biological Chemistry, 2009, 284, 2023-2030.	1.6	56
49	Relative impact of residues at the intracellular and extracellular ends of the human GABAC I receptor M2 domain on picrotoxinin activity. European Journal of Pharmacology, 2008, 580, 27-35.	1.7	9
50	Structural Determinants of Ca2+ Permeability and Conduction in the Human 5-Hydroxytryptamine Type 3A Receptor. Journal of Biological Chemistry, 2008, 283, 19301-19313.	1.6	41
51	Dynamic Modification of a Mutant Cytoplasmic Cysteine Residue Modulates the Conductance of the Human 5-HT3A Receptor. Journal of Biological Chemistry, 2007, 282, 6172-6182.	1.6	25
52	Novel structural determinants of single-channel conductance in nicotinic acetylcholine and 5-hydroxytryptamine type-3 receptors. Biochemical Society Transactions, 2006, 34, 882-886.	1.6	14
53	Common Determinants of Single Channel Conductance within the Large Cytoplasmic Loop of 5-Hydroxytryptamine Type 3 and $\hat{l}\pm4\hat{l}^22$ Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2006, 281, 8062-8071.	1.6	90
54	Methyllycaconitine analogues have mixed antagonist effects at nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry, 2005, 13, 4565-4575.	1.4	61

#	Article	lF	CITATIONS
55	Charged Residues at the 2′ Position of Human GABAC il Receptors Invert Ion Selectivity and Influence Open State Probability. Journal of Biological Chemistry, 2004, 279, 54153-54160.	1.6	27
56	Mutations of the 2′ proline in the M2 domain of the human GABAC Ï₁ subunit alter agonist responses. Neuropharmacology, 2004, 46, 770-781.	2.0	18