
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3092826/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patterned Superhydrophobic Metallic Surfaces. Langmuir, 2009, 25, 4821-4827.	3.5	677
2	Wall slip of molten high density polyethylenes. II. Capillary rheometer studies. Journal of Rheology, 1992, 36, 703-741.	2.6	364
3	Rheology of Nanocrystalline Cellulose Aqueous Suspensions. Langmuir, 2012, 28, 17124-17133.	3.5	287
4	Wall slip of molten polymers. Progress in Polymer Science, 2012, 37, 624-643.	24.7	263
5	Synthesis, Characterization, and Viscoelastic Properties of High Molecular Weight Hyperbranched Polyglycerols. Macromolecules, 2006, 39, 7708-7717.	4.8	233
6	Role of slip and fracture in the oscillating flow of HDPE in a capillary. Journal of Rheology, 1992, 36, 845-884.	2.6	195
7	lonic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose, 2014, 21, 3347-3359.	4.9	182
8	Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity. Nanotechnology, 2013, 24, 415302.	2.6	175
9	Physics of ice friction. Journal of Applied Physics, 2010, 107, .	2.5	154
10	Laser-Patterned Super-Hydrophobic Pure Metallic Substrates: Cassie to Wenzel Wetting Transitions. Journal of Adhesion Science and Technology, 2011, 25, 2789-2809.	2.6	148
11	Long chain branching and polydispersity effects on the rheological properties of polyethylenes. Polymer Engineering and Science, 2000, 40, 2279-2287.	3.1	138
12	Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheologica Acta, 2013, 52, 741-751.	2.4	136
13	Rheology of pulp fibre suspensions: A critical review. Chemical Engineering Science, 2011, 66, 3460-3470.	3.8	121
14	Effect of maleic anhydride content on the rheology and phase behavior of poly(styrene-co -maleic) Tj ETQqO 0	0 rgBT /O	verlock 10 Tf
15	Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions. Biomacromolecules, 2016, 17, 2747-2754.	5.4	104
16	Slip mechanisms in complex fluid flows. Soft Matter, 2015, 11, 7851-7856.	2.7	100
17	Effect of Extreme Wettability on Platelet Adhesion on Metallic Implants: From Superhydrophilicity to Superhydrophobicity. ACS Applied Materials & Interfaces, 2016, 8, 17631-17641.	8.0	91

¹⁸PLAâ€"PHBâ€"PLA Triblock Copolymers: Synthesis by Sequential Addition and Investigation of Mechanical
and Rheological Properties. Macromolecules, 2013, 46, 3965-3974.4.886

#	Article	IF	CITATIONS
19	Ice friction: The effects of surface roughness, structure, and hydrophobicity. Journal of Applied Physics, 2009, 106, .	2.5	84
20	The work of adhesion of polymer/wall interfaces and its association with the onset of wall slip. Journal of Rheology, 1998, 42, 795-812.	2.6	82
21	Interfacial phenomena in the capillary extrusion of metallocene polyethylenes. Journal of Rheology, 1997, 41, 1299-1316.	2.6	81
22	Role of processing aids in the extrusion of molten polymers. Journal of Vinyl and Additive Technology, 2002, 8, 7-24.	3.4	80
23	Wall slip in the capillary flow of molten polymers subject to viscous heating. AICHE Journal, 1997, 43, 598-608.	3.6	78
24	Effects of Interfacial Conditions on Wall Slip and Sharkskin Melt Fracture of HDPE. International Polymer Processing, 1993, 8, 36-43.	0.5	77
25	Influence of molecular structure on the rheological and processing behavior of polyethylene resins. Polymer Engineering and Science, 1999, 39, 804-815.	3.1	71
26	Microfabrication of polymeric surfaces with extreme wettability using hot embossing. Applied Surface Science, 2016, 378, 426-434.	6.1	71
27	Wall slip and melt fracture of poly(lactides). Rheologica Acta, 2012, 51, 357-369.	2.4	69
28	Antifouling Biomimetic Liquid-Infused Stainless Steel: Application to Dairy Industrial Processing. ACS Applied Materials & Interfaces, 2017, 9, 26565-26573.	8.0	68
29	A Slip Model for Linear Polymers Based on Adhesive Failure. International Polymer Processing, 1993, 8, 135-142.	0.5	67
30	Solution and melt viscoelastic properties of controlled microstructure poly(lactide). Journal of Rheology, 2011, 55, 987-1005.	2.6	67
31	Rheology of Ziegler–Natta and metallocene high-density polyethylenes: broad molecular weight distribution effects. Rheologica Acta, 2011, 50, 17-27.	2.4	67
32	Boron nitride as a processing aid for the extrusion of polyolefins and fluoropolymers. Polymer Engineering and Science, 2000, 40, 179-190.	3.1	66
33	The relationship between global warming and methane gas hydrates in the earth. Chemical Engineering Science, 1993, 48, 3963-3969.	3.8	63
34	Viscoelastic properties and constitutive modelling of bitumen. Fuel, 2013, 108, 391-399.	6.4	63
35	The effect of teflonâ,,¢ coatings in polyethylene capillary extrusion. Journal of Applied Polymer Science, 1995, 55, 595-603.	2.6	62
36	Bagley correction: the effect of contraction angle and its prediction. Rheologica Acta, 2003, 42, 309-320.	2.4	61

#	Article	IF	CITATIONS
37	Thermorheological properties of LLDPE/LDPE blends. Rheologica Acta, 2008, 47, 19-31.	2.4	59
38	Titanium pyridonates and amidates: novel catalysts for the synthesis of random copolymers. Chemical Communications, 2013, 49, 57-59.	4.1	59
39	Paste extrusion of polytetrafluoroethylene (PTFE): Surface tension and viscosity effects. Powder Technology, 2005, 153, 108-118.	4.2	58
40	Rheology of bitumen: Effects of temperature, pressure, CO2 concentration and shear rate. Fuel, 2014, 116, 578-587.	6.4	57
41	Freeze–Thaw Gelation of Cellulose Nanocrystals. ACS Macro Letters, 2019, 8, 486-491.	4.8	57
42	Superhydrophobic laser ablated PTFE substrates. Applied Surface Science, 2015, 349, 715-723.	6.1	56
43	CO ₂ -Switchable Cellulose Nanocrystal Hydrogels. Chemistry of Materials, 2018, 30, 376-385.	6.7	56
44	Start-up pressure transients in a capillary rheometer. Polymer Engineering and Science, 1994, 34, 493-499.	3.1	55
45	Properties of polytetrafluoroethylene (PTFE) paste extrudates. Polymer Engineering and Science, 2002, 42, 1247-1259.	3.1	55
46	Thermorheological properties of poly (εâ€caprolactone)/polylactide blends. Polymer Engineering and Science, 2012, 52, 2348-2359.	3.1	55
47	The effect of slip in the flow of a branched PP melt: experiments and simulations. Rheologica Acta, 2005, 44, 418-426.	2.4	54
48	Effect of Surface Coatings on Wall Slip of LLDPE. International Polymer Processing, 1993, 8, 30-35.	0.5	53
49	Extrude distortion in the capillary/slit extrusion of a molten polypropylene. Polymer Engineering and Science, 1995, 35, 1864-1871.	3.1	53
50	The rheological and physical properties of linear and branched polypropylene blends. Polymer Engineering and Science, 2007, 47, 1133-1140.	3.1	53
51	The Role of Nitrogen Donors in Zinc Catalysts for Lactide Ring-Opening Polymerization. Inorganic Chemistry, 2016, 55, 9445-9453.	4.0	53
52	The effect of surface energy of boron nitride on polymer processability. Polymer Engineering and Science, 2004, 44, 1543-1550.	3.1	52
53	The apparent yield stress of pulp fiber suspensions. Journal of Rheology, 2010, 54, 1137-1154.	2.6	52
54	A Comparison of the Rheological and Mechanical Properties of Isotactic, Syndiotactic, and Heterotactic Poly(lactide). Macromolecules, 2016, 49, 909-919.	4.8	52

#	Article	IF	CITATIONS
55	The effect of boron nitride on the rheology and processing of polyolefins. Rheologica Acta, 2000, 39, 583-594.	2.4	50
56	RADIO FREQUENCY VACUUM DRYING OF WOOD. I. MATHEMATICAL MODEL. Drying Technology, 2001, 19, 65-84.	3.1	50
57	Ageing, yielding, and rheology of nanocrystalline cellulose suspensions. Journal of Rheology, 2013, 57, 131-148.	2.6	50
58	Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: a kinetic, equilibrium, and mechanistic investigation. Cellulose, 2020, 27, 3211-3232.	4.9	50
59	Rheology of mozzarella cheese. International Dairy Journal, 2007, 17, 1063-1072.	3.0	49
60	Flow Implications in the Processing of Tetrafluoroethylene/Hexafluoropropylene Copolymers. International Polymer Processing, 1995, 10, 204-212.	0.5	47
61	Paste Extrusion of Polytetrafluoroethylene (PTFE) Fine Powder Resins. Canadian Journal of Chemical Engineering, 2002, 80, 1153-1165.	1.7	47
62	Diffusivity of CO ₂ in Bitumen: Pressure–Decay Measurements Coupled with Rheometry. Energy & Fuels, 2014, 28, 1304-1311.	5.1	47
63	An active particle in a complex fluid. Journal of Fluid Mechanics, 2017, 823, 675-688.	3.4	47
64	Sensitivity analysis of the Bagley correction to shear and extensional rheology. Rheologica Acta, 1998, 37, 438-448.	2.4	46
65	Shear-induced mixing and demixing in poly(styrene- co-maleic anhydride)/poly(methyl methacrylate) blends. Journal of Rheology, 1998, 42, 1227-1247.	2.6	46
66	Contact Angle Hysteresis of Non-Flattened-Top Micro/Nanostructures. Langmuir, 2014, 30, 3274-3284.	3.5	46
67	Air- and Moisture-Stable Indium Salan Catalysts for Living Multiblock PLA Formation in Air. ACS Catalysis, 2017, 7, 6413-6418.	11.2	46
68	Rheological characterization of CNC-CTAB network below and above critical micelle concentration (CMC). Carbohydrate Polymers, 2021, 257, 117552.	10.2	45
69	Capillary flow of lowâ€density polyethylene. Polymer Engineering and Science, 2012, 52, 649-662.	3.1	44
70	Preforming behavior of polytetrafluoroethylene paste. Powder Technology, 2001, 121, 249-258.	4.2	43
71	Thixotropic flow of toothpaste through extrusion dies. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 1262-1271.	2.4	43
72	Viscoelastic behaviour and flow instabilities of biodegradable poly (ε-caprolactone) polyesters. Rheologica Acta, 2012, 51, 179-192.	2.4	43

#	Article	IF	CITATIONS
73	Wall slip of HDPEs: Molecular weight and molecular weight distribution effects. Journal of Rheology, 2013, 57, 927-948.	2.6	43
74	Rheology of pulp suspensions using ultrasonic Doppler velocimetry. Rheologica Acta, 2010, 49, 1127-1140.	2.4	42
75	A dynamic slip velocity model for molten polymers based on a network kinetic theory. Rheologica Acta, 1994, 33, 38-47.	2.4	41
76	Rheological characterization and constitutive modeling of bread dough. Rheologica Acta, 2008, 47, 369-381.	2.4	41
77	Steady flow simulations of compressible PTFE paste extrusion under severe wall slip. Journal of Non-Newtonian Fluid Mechanics, 2009, 157, 26-33.	2.4	41
78	Thermorheological and mechanical behavior of polylactide and its enantiomeric diblock copolymers and blends. Polymer, 2012, 53, 2443-2452.	3.8	41
79	Highly Active Chiral Zinc Catalysts for Immortal Polymerization of β-Butyrolactone Form Melt Processable Syndio-Rich Poly(hydroxybutyrate). Macromolecules, 2016, 49, 8812-8824.	4.8	41
80	RADIO FREQUENCY VACUUM DRYING OF WOOD. II. EXPERIMENTAL MODEL EVALUATION. Drying Technology, 2001, 19, 85-98.	3.1	40
81	Constitutive modeling and flow simulation of polytetrafluoroethylene (PTFE) paste extrusion. Journal of Non-Newtonian Fluid Mechanics, 2006, 139, 44-53.	2.4	40
82	Thixotropy, yielding and ultrasonic Doppler velocimetry in pulp fibre suspensions. Rheologica Acta, 2012, 51, 201-214.	2.4	40
83	Extrudate swell of a high-density polyethylene melt: II. Modeling using integral and differential constitutive equations. Journal of Non-Newtonian Fluid Mechanics, 2015, 225, 94-105.	2.4	40
84	The onset of wall slip and sharkskin melt fracture in capillary flow. Polymer Engineering and Science, 1994, 34, 1441-1449.	3.1	39
85	Mechanism of gross melt fracture elimination in the extrusion of polyethylenes in the presence of boron nitride. Rheologica Acta, 2004, 43, 624-633.	2.4	38
86	The effect of nanoclays on the processibility of polyolefins. Polymer Engineering and Science, 2005, 45, 1098-1107.	3.1	38
87	A stimulus-responsive, in situ-forming, nanoparticle-laden hydrogel for ocular drug delivery. Drug Delivery and Translational Research, 2018, 8, 484-495.	5.8	35
88	Photoactivated Healable Vitrimeric Copolymers. Macromolecules, 2019, 52, 36-42.	4.8	34
89	Yield stress and wall slip of kaolinite networks. Physics of Fluids, 2021, 33, .	4.0	34
90	Fractal analysis of the sharkskin phenomenon in polymer melt extrusion. Journal of Rheology, 1993, 37, 355-366.	2.6	33

#	Article	IF	CITATIONS
91	Effects of molecular structure on the rheology and processability of blow-molding high-density polyethylene resins. Advances in Polymer Technology, 2001, 20, 1-13.	1.7	33
92	Fingerprinting the processing behavior of polyethylenes from transient extensional flow and peel experiments in the melt state. Rheologica Acta, 2004, 44, 1-15.	2.4	32
93	Thermorheological properties of LLDPE/LDPE blends: Effects of production technology of LLDPE. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1669-1683.	2.1	32
94	Effect of Ionic Surfactants on the Viscoelastic Properties of Chiral Nematic Cellulose Nanocrystal Suspensions. Langmuir, 2020, 36, 293-301.	3.5	32
95	Excess pressure losses in the capillary flow of molten polymers. Rheologica Acta, 1996, 35, 545-555.	2.4	31
96	Polytetrafluoroethylene paste preforming: viscosity and surface tension effects. Powder Technology, 2004, 146, 73-83.	4.2	31
97	Flow-induced crystallization of high-density polyethylene: the effects of shear and uniaxial extension. Rheologica Acta, 2012, 51, 315-327.	2.4	31
98	Synthesis and Thermorheological Analysis of Biobased Lignin- <i>graft</i> -poly(lactide) Copolymers and Their Blends. ACS Sustainable Chemistry and Engineering, 2018, 6, 1650-1661.	6.7	31
99	Nonlinear rheological response of phase separating polymer blends: Poly(styrene-co-maleic) Tj ETQq1 1 0.784314	1 rgBT /Ov 2.6	erlock 10 Tf
100	Contact angle hysteresis: surface morphology effects. Colloid and Polymer Science, 2013, 291, 317-328.	2.1	30
101	Dynamic slip of polydisperse linear polymers using partitioned plate. Physics of Fluids, 2018, 30, .	4.0	29
102	Gross melt fracture elimination: The role of surface energy of boron nitride powders. Polymer Engineering and Science, 2002, 42, 743-752.	3.1	28
103	Rheology of metallocene polyethylene-based nanocomposites: Influence of graft modification. Journal of Rheology, 2006, 50, 415-434.	2.6	28
104	Extrudate swell of HDPE melts: I. Experimental. Journal of Non-Newtonian Fluid Mechanics, 2015, 225, 86-93.	2.4	28
105	Toward Biodegradable Electronics: Ionic Diodes Based on a Cellulose Nanocrystal–Agarose Hydrogel. ACS Applied Materials & Interfaces, 2020, 12, 52182-52191.	8.0	28
106	Rheological evaluation of kinetic hydrate inhibitors in NaCl/ <i>n</i> â€heptane solutions. AICHE Journal, 2014, 60, 2654-2659.	3.6	27
107	The yielding of attractive gels of nanocrystal cellulose (CNC). Journal of Rheology, 2021, 65, 855-869.	2.6	27
108	Apparent slip in colloidal suspensions. Journal of Rheology, 2022, 66, 79-90.	2.6	27

#	Article	IF	CITATIONS
109	A generalized Giesekus constitutive model with retardation time and its association to the spurt effect. Journal of Non-Newtonian Fluid Mechanics, 1995, 57, 119-136.	2.4	26
110	Slip effects in tapered dies. Polymer Engineering and Science, 2009, 49, 1960-1969.	3.1	26
111	Superhydrophobic Lignocellulosic Wood Fiber/Mineral Networks. ACS Applied Materials & Interfaces, 2013, 5, 9057-9066.	8.0	26
112	Effects of processing variables on polypropylene degradation and long chain branching with UV irradiation. Polymer Degradation and Stability, 2014, 104, 1-10.	5.8	26
113	Wall slip of polydisperse linear polymers using double reptation. Journal of Rheology, 2015, 59, 885-901.	2.6	26
114	Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls. Journal of Non-Newtonian Fluid Mechanics, 2009, 159, 1-9.	2.4	25
115	Relaxation effects of slip in shear flow of linear molten polymers. Rheologica Acta, 2010, 49, 267-274.	2.4	25
116	Non-isothermal extrudate swell. Physics of Fluids, 2016, 28, .	4.0	25
117	Influence of stainless steel surface properties on whey protein fouling under industrial processing conditions. Journal of Food Engineering, 2018, 228, 38-49.	5.2	25
118	Yielding of cellulose nanocrystal suspensions in the presence of electrolytes. Physics of Fluids, 2020, 32, .	4.0	25
119	Brownian dynamics simulations of shear-thickening in dilute polymer solutions. Rheologica Acta, 1996, 35, 274-287.	2.4	24
120	Rheological characterization of polyethylene terephthalate resins using a multimode Phan-Tien-Tanner constitutive relation. Rheologica Acta, 1997, 36, 568-578.	2.4	24
121	Relaxation time spectra of star polymers. Rheologica Acta, 2000, 39, 38-43.	2.4	24
122	Fabrication of Micro/Nano Patterns on Polymeric Substrates Using Laser Ablation Methods to Control Wettability Behaviour: A Critical Review. Reviews of Adhesion and Adhesives, 2017, 5, 55-78.	3.4	24
123	Quiescent and shear-induced crystallization of polyprophylenes. Rheologica Acta, 2014, 53, 519-535.	2.4	23
124	Binary Blends of Entangled Star and Linear Poly(hydroxybutyrate): Effect of Constraint Release and Dynamic Tube Dilation. Macromolecules, 2017, 50, 2535-2546.	4.8	23
125	Autophoretic locomotion in weakly viscoelastic fluids at finite Péclet number. Physics of Fluids, 2017, 29, .	4.0	23
126	Nonlinear rheology of poly(ethylene- <i>co</i> -methacrylic acid) ionomers. Journal of Rheology, 2018, 62, 1319-1329.	2.6	23

#	Article	IF	CITATIONS
127	An irreversible thermodynamics model for unsteady-state nonisothermal moisture diffusion in wood. Wood Science and Technology, 1994, 28, 349.	3.2	22
128	Rolling of bread dough: Experiments and simulations. Food and Bioproducts Processing, 2009, 87, 124-138.	3.6	22
129	Capillary Extrusion and Swell of a HDPE Melt Exhibiting Slip. Advances in Polymer Technology, 2013, 32,	1.7	22
130	Surface fractionation effects on slip of polydisperse polymer melts. Physics of Fluids, 2016, 28, 093101.	4.0	22
131	Catalytic Synthesis of Secondary Amine-Containing Polymers: Variable Hydrogen Bonding for Tunable Rheological Properties. Macromolecules, 2016, 49, 4423-4430.	4.8	22
132	Hydrodynamics of gas-agitated liquid-liquid dispersions. AICHE Journal, 1990, 36, 677-684.	3.6	21
133	A multimode interfacial constitutive equation for molten polymers. Journal of Rheology, 1995, 39, 61-71.	2.6	21
134	Modeling the shear-induced structural changes in polymeric fluids. Journal of Non-Newtonian Fluid Mechanics, 1999, 82, 367-385.	2.4	21
135	Processability of LLDPE/LDPE blends: Capillary extrusion studies. Polymer Engineering and Science, 2007, 47, 1317-1326.	3.1	21
136	Sharkskin and oscillating melt fracture: Why in slit and capillary dies and not in annular dies?. Polymer Engineering and Science, 2008, 48, 405-414.	3.1	21
137	Rheology of mozzarella cheese: Extrusion and rolling. International Dairy Journal, 2008, 18, 615-623.	3.0	21
138	The ice friction of polymeric substrates. Tribology International, 2012, 55, 59-67.	5.9	21
139	Slip of polymer melts over micro/nano-patterned metallic surfaces. Soft Matter, 2016, 12, 9759-9768.	2.7	21
140	Ice friction: the effect of thermal conductivity. Journal of Glaciology, 2010, 56, 473-479.	2.2	20
141	Rheology of thermoplastic vulcanizates (TPVs). Journal of Rheology, 2020, 64, 1325-1341.	2.6	20
142	Crystallization of an ethylene-based butene plastomer: the effect of uniaxial extension. Rheologica Acta, 2010, 49, 931-939.	2.4	19
143	Synthesis and Rheological Characterization of Star-Shaped and Linear Poly(hydroxybutyrate). Macromolecules, 2015, 48, 6672-6681.	4.8	19
144	Molecular dynamics simulations of monodisperse/bidisperse polymer melt crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2318-2326.	2.1	19

#	Article	IF	CITATIONS
145	The effect of damping function on extrudate swell. Journal of Non-Newtonian Fluid Mechanics, 2016, 236, 73-82.	2.4	19
146	Contraction flow of ionomers and their corresponding copolymers: Ionic and hydrogen bonding effects. Physics of Fluids, 2019, 31, .	4.0	19
147	On numerical Simulations of Polymer Extrusion Instabilities. Applied Rheology, 2002, 12, 88-104.	5.2	18
148	Appropriate Boundary Conditions in the Flow of Molten Polymers. International Polymer Processing, 2010, 25, 55-62.	0.5	18
149	Carbopol as a model fluid for studying mixing of pulp fibre suspensions. Chemical Engineering Science, 2010, 65, 1288-1295.	3.8	18
150	Capillary flow of milk chocolate. Journal of Non-Newtonian Fluid Mechanics, 2014, 210, 56-65.	2.4	18
151	Slip effects in HDPE flows. Journal of Non-Newtonian Fluid Mechanics, 2011, 167-168, 18-18.	2.4	17
152	Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress. International Journal of Food Microbiology, 2016, 238, 172-182.	4.7	17
153	Melt Fracture of Linear PE. International Polymer Processing, 2005, 20, 60-67.	0.5	16
154	Viscoelastic flow simulation of polytetrafluoroethylene (PTFE) paste extrusion. Journal of Non-Newtonian Fluid Mechanics, 2008, 153, 25-33.	2.4	16
155	Rheological characterization of well-defined tetrafluoroethylene/hexafluoropropylene copolymers. Rheologica Acta, 1998, 37, 279-288.	2.4	15
156	Melt fracture of HDPEs: Metallocene versus Ziegler–Natta and broad MWD effects. Polymer, 2012, 53, 4195-4201.	3.8	15
157	Flow behaviour of rubber in capillary and injection moulding dies. Plastics, Rubber and Composites, 2017, 46, 110-118.	2.0	15
158	Molecular simulations of the piezoionic effect. Soft Matter, 2018, 14, 6222-6229.	2.7	15
159	The rectification mechanism in polyelectrolyte gel diodes. Physics of Fluids, 2021, 33, .	4.0	15
160	Extrudate Swell of High Density Polyethylenes in Slit (Flat) Dies. International Polymer Processing, 2016, 31, 262-272.	0.5	14
161	Dynamics of partially miscible polylactide-poly(Îμ-caprolactone) blends in the presence of cold crystallization. Rheologica Acta, 2016, 55, 657-671.	2.4	14
162	One-Pot Synthesis of Oxygenated Block Copolymers by Polymerization of Epoxides and Lactide Using Cationic Indium Complexes. Macromolecules, 2020, 53, 8819-8828.	4.8	14

#	Article	IF	CITATIONS
163	A mechanism for extrusion instabilities in polymer melts. Polymer Engineering and Science, 1999, 39, 2498-2504.	3.1	13
164	A new processing aid for the extrusion of polyolefins. Journal of Vinyl and Additive Technology, 2000, 6, 113-118.	3.4	13
165	Radio Frequency Vacuum Drying of Wood. III. Two-Dimensional Model, Optimization, and Validation. Drying Technology, 2003, 21, 1399-1410.	3.1	13
166	Paste Extrusion of Polytetrafluoroethylene: Temperature, Blending and Processing Aid Effects. International Polymer Processing, 2006, 21, 497-503.	0.5	13
167	Annular Extrudate Swell of a Fluoropolymer Melt. International Polymer Processing, 2012, 27, 535-546.	0.5	13
168	Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al ₂ O ₃ Thin Films. ACS Applied Materials & Interfaces, 2016, 8, 13590-13600.	8.0	13
169	Dynamic Cross-Linking of Catalytically Synthesized Poly(Aminonorbornenes). Macromolecules, 2020, 53, 2649-2661.	4.8	13
170	Catalytic Amine Functionalization and Polymerization of Cyclic Alkenes Creates Adhesive and Self-Healing Materials. ACS Applied Polymer Materials, 2021, 3, 2330-2335.	4.4	13
171	Determination of the surface fractal dimension from sorption isotherms of five softwoods. Wood Science and Technology, 1999, 33, 139-149.	3.2	12
172	Improved Spinnability of Metallocene Polyethylenes by Using Processing Aids. International Polymer Processing, 2003, 18, 67-73.	0.5	12
173	Processing aids for biodegradable polymers. Journal of Applied Polymer Science, 2013, 128, 3592-3600.	2.6	12
174	Zero Poisson's ratio PTFE in uniaxial extension. Polymer Testing, 2016, 55, 143-151.	4.8	12
175	Microstructure characterization of polyethylene using thermo-rheological methods. Polymer Testing, 2017, 60, 68-77.	4.8	12
176	Designing Stainless Steel Surfaces with Antiâ€Pitting Properties Applying Laser Ablation and Organofluorine Coatings. Advanced Engineering Materials, 2018, 20, 1700814.	3.5	12
177	The sol–gel transition of ultra-low solid content TEMPO-cellulose nanofibril/mixed-linkage β-glucan bionanocomposite gels. Soft Matter, 2018, 14, 9393-9401.	2.7	12
178	Rheology and processing of polytetrafluoroethylene (<scp>PTFE</scp>) paste. Canadian Journal of Chemical Engineering, 2020, 98, 1852-1865.	1.7	12
179	Rheology of sodium and zinc ionomers: Effects of neutralization and valency. Physics of Fluids, 2020, 32, .	4.0	12
180	STABILITY ANALYSIS OF FILM CASTING FOR PET RESINS USING A MULTIMODE PHAN-THIEN-TANNER CONSTITUTIVE EQUATION. Journal of Plastic Film and Sheeting, 2000, 16, 312-332.	2.2	12

#	Article	IF	CITATIONS
181	Superhydrophobic Laser Ablated Stainless Steel Substrates and their Wettability. Surface Innovations, 2015, , 1-27.	2.3	12
182	Transitional drop size distributions in gas agitated liquid-liquid dispersions. Chemical Engineering Science, 1990, 45, 2349-2356.	3.8	11
183	Fractal dimension of wood surfaces from sorption isotherms. Wood Science and Technology, 1994, 28, 275.	3.2	11
184	Combining boron nitride with a fluoroelastomer: An enhanced polymer processing additive. Journal of Vinyl and Additive Technology, 2001, 7, 90-97.	3.4	11
185	An analytical flow model for PTFE paste through annular dies. AICHE Journal, 2006, 52, 4028-4038.	3.6	11
186	Transient capillary rheometry: Compressibility effects. Journal of Non-Newtonian Fluid Mechanics, 2007, 145, 102-108.	2.4	11
187	A novel miniature mixing device for polymeric blends and nanocomposites. Polymer Engineering and Science, 2009, 49, 2092-2098.	3.1	11
188	Effect of molecular structure and rheology on the compression foam molding of ethyleneâ€î±â€olefin copolymers. Polymer Engineering and Science, 2011, 51, 1145-1154.	3.1	11
189	A simple improved mathematical model for polytetrafluoroethylene (PTFE) paste extrusion. Chemical Engineering Science, 2013, 89, 216-222.	3.8	11
190	Polytetrafluoroethylene Paste Extrusion: A Fibrillation Model and Its Relation to Mechanical Properties. International Polymer Processing, 2013, 28, 306-313.	0.5	11
191	Quiescent crystallization of polypropylene: Experiments and modeling. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1259-1275.	2.1	11
192	Rheology and diffusivity of bitumen with liquid and supercritical CO2. Fuel, 2019, 244, 431-438.	6.4	11
193	J.G. Oldroyd's early ideas leading to the modern understanding of wall slip. Journal of Non-Newtonian Fluid Mechanics, 2021, 293, 104566.	2.4	11
194	Kaolinite colloidal suspensions under the influence of sodium dodecyl sulfate. Physics of Fluids, 2022, 34, .	4.0	11
195	Rheology and Processing of Molten Poly(methyl methacrylate) Resins. International Polymer Processing, 2006, 21, 155-163.	O.5	10
196	Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics. Physics of Fluids, 2018, 30, .	4.0	10
197	Rheological Properties Related to Extrusion of Polyolefins. Polymers, 2021, 13, 489.	4.5	10
198	Role of PTFE paste fibrillation on Poisson's ratio. Polymer Testing, 2017, 61, 65-73.	4.8	10

#	Article	IF	CITATIONS
199	Rheology of mature fine tailings. Physics of Fluids, 2022, 34, .	4.0	10
200	Boron nitride and fluoropolymer combinations: Interactions and their performance as processing aids. Polymer Engineering and Science, 2005, 45, 669-677.	3.1	9
201	Melt fracture of two broad molecular weight distribution highâ€density polyethylenes. Polymer Engineering and Science, 2012, 52, 795-804.	3.1	9
202	Contraction flow of ionomers. Journal of Non-Newtonian Fluid Mechanics, 2018, 262, 131-141.	2.4	9
203	Thermorheological properties of asphalt binders. Canadian Journal of Chemical Engineering, 2020, 98, 1803-1814.	1.7	9
204	Convective Heat and Mass Transfer in Nonisothermal Moisture Desorption. Holzforschung, 1995, 49, 163-167.	1.9	8
205	Effect of combining boron nitride with fluoroelastomer on the melt fracture of HDPE in extrusion blow molding. Journal of Vinyl and Additive Technology, 2000, 6, 196-204.	3.4	8
206	Capillary extrusion flow of a fluoropolymer melt. International Journal of Material Forming, 2013, 6, 29-40.	2.0	8
207	Ice friction of ultra-high molecular weight polyethylene: The effects of fluorine additives and plasma (PECVD) treatment. Tribology International, 2013, 57, 177-183.	5.9	8
208	Capillary flow of sodium and zinc ionomers. Physics of Fluids, 2020, 32, .	4.0	8
209	Photocross-Linked Antimicrobial Amino-Siloxane Elastomers. ACS Applied Materials & Interfaces, 2021, 13, 22195-22203.	8.0	8
210	BORON NITRIDE POWDERS: NEW PROCESSING AIDS FOR MOLTEN POLYMERS. Journal of Plastic Film and Sheeting, 2000, 16, 16-32.	2.2	7
211	Paste extrusion of polytetrafluoroethylene (PTFE) powders through tubular and annular dies at high reduction ratios. Journal of Applied Polymer Science, 2008, 108, 1055-1063.	2.6	7
212	Capillary Extrusion Studies of LLDPE/LDPE Blends: Effects of Manufacturing Technology of LLDPE and Long Chain Branching. International Polymer Processing, 2008, 23, 385-394.	0.5	7
213	Rolling of mozzarella cheese: Experiments and simulations. Journal of Food Engineering, 2009, 91, 269-279.	5.2	7
214	Modelling PTFE paste extrusion: The effect of an objective flow type parameter. Journal of Non-Newtonian Fluid Mechanics, 2009, 159, 41-49.	2.4	7
215	Entry flows of polylactides with slip. Journal of Non-Newtonian Fluid Mechanics, 2014, 210, 78-84.	2.4	7
216	Flow-induced crystallization of polypropylenes in capillary flow. Rheologica Acta, 2015, 54, 207-221.	2.4	7

#	Article	IF	CITATIONS
217	Wall slip of polyisobutylenes: effect of molecular characteristics. Rheologica Acta, 2017, 56, 85-94.	2.4	7
218	The role of microstructure on melt fracture of linear low density polyethylenes. Polymer Testing, 2018, 67, 266-274.	4.8	7
219	Modeling polymer extrusion with varying die gap using Arbitrary Lagrangian Eulerian (ALE) method. Physics of Fluids, 2018, 30, 093103.	4.0	7
220	Poisson–Boltzmann modeling and molecular dynamics simulations of polyelectrolyte gel diodes in the static regime. Soft Matter, 2020, 16, 1091-1101.	2.7	7
221	Flow-induced fractionation effects on slip of polydisperse polymer melts. Physics of Fluids, 2020, 32, 073109.	4.0	7
222	Visible-Light-Sensitized Photo-Oxidative Cross-Linking of Polysiloxanes Using Singlet Oxygen. ACS Applied Polymer Materials, 2020, 2, 4802-4808.	4.4	7
223	Melt fracture and wall slip of thermoplastic vulcanizates. Polymer Engineering and Science, 2021, 61, 942-958.	3.1	7
224	Cationic and anionic cellulose nanocrystalline (CNC) hydrogels: A rheological study. Physics of Fluids, 2021, 33, .	4.0	7
225	Biochar as a sustainable and renewable additive for the production of Poly(ε-caprolactone) composites. Sustainable Chemistry and Pharmacy, 2022, 25, 100586.	3.3	7
226	Paste Extrusion and Mechanical Properties of PTFE. International Polymer Processing, 2015, 30, 603-614.	0.5	6
227	Entry pressure correlations in capillary flow. Physics of Fluids, 2020, 32, .	4.0	6
228	Rheological characterization of polyethylene terephthalate resins using a multimode Phan-Tien-Tanner constitutive relation. Rheologica Acta, 1997, 36, 568-578.	2.4	6
229	Rheological evaluation of metallocene polyethylenes with processing aids by multi-wave oscillations. Polymer Engineering and Science, 2004, 44, 2047-2051.	3.1	5
230	Tubing Extrusion of a Fluoropolymer Melt. International Polymer Processing, 2012, 27, 259-269.	0.5	5
231	Melt fracture of polyisobutylenes. Polymer Testing, 2017, 60, 30-38.	4.8	5
232	The extrudate swell of HDPE: Rheological effects. AIP Conference Proceedings, 2017, , .	0.4	5
233	Aromatic interactions in aryl-capped polylactides: A thermorheological investigation. Journal of Rheology, 2017, 61, 1137-1148.	2.6	5
234	On the molecular weight dependence of slip velocity of polymer melts. Journal of Rheology, 2017, 61, 731-739.	2.6	5

#	Article	IF	CITATIONS
235	Environmental Aspects of Clathrate Hydrates. Annals of the New York Academy of Sciences, 1994, 715, 270-282.	3.8	4
236	Interrelations between Rheology and Phase Behaviour in Partially Miscible Blends: The Case of Polydimethylsiloxane/Polyethylmethylsiloxane (PDMS/PEMS). Canadian Journal of Chemical Engineering, 2002, 80, 1057-1064.	1.7	4
237	The Effect of Refrigerated Storage on the Rheological Properties of Three Commercial Mozzarella Cheeses. International Journal of Food Engineering, 2008, 4, .	1.5	4
238	Rheological modeling of thermoplastic vulcanizates (TPVs) using the Kaye–Bernstein, Kearsley, Zapas (K–BKZ) constitutive law. Physics of Fluids, 2021, 33, 083107.	4.0	4
239	Synergistic ionic interactions in EMAA ionomer blends: A rheological and mechanical property investigation. Journal of Rheology, 2021, 65, 1373-1389.	2.6	4
240	Flow-induced crystallization of polylactides. Journal of Rheology, 2022, 66, 257-273.	2.6	4
241	Extrudate Distortion in the Capillary/Slit Extrusion of a Molten Polypropylene. Journal of Plastic Film and Sheeting, 1995, 11, 38-57.	2.2	3
242	Rheology and Processing of Tetrafluoroethylene/Hexafluoropropylene Copolymers. International Polymer Processing, 2012, 27, 167-180.	0.5	3
243	Numerical simulation of the wireâ€pinning process in PET film casting: Steadyâ€state results. AICHE Journal, 2012, 58, 1979-1986.	3.6	3
244	Opaque and translucent films from aqueous microfiber suspensions by evaporative self-assembly. Physics of Fluids, 2021, 33, 032012.	4.0	2
245	Parameter identification of transport PDE/nonlinear ODE cascade model for polymer extrusion with varying die gap. Canadian Journal of Chemical Engineering, 2021, 99, 1158-1176.	1.7	2
246	Overview of Processing Instabilities. Chemical Industries, 2004, , 1-12.	0.1	2
247	Transient Swell of a High Density Polyethylene Using Adjustable Gap Slit Die. International Polymer Processing, 2017, 32, 574-581.	0.5	2
248	Photo-oxidative cross-linking of thiol polydimethylsiloxane co-polymers <i>via</i> disulfide formation. Polymer Chemistry, 2022, 13, 395-401.	3.9	2
249	High-concentrated zirconia suspensions stabilized by cellulose nanocrystals. Ceramics International, 2022, 48, 19694-19702.	4.8	2
250	Calendering of thermoplastics: models and computations. International Polymer Processing, 2022, 37, 341-356.	0.5	2
251	Influence of processing aids on the uniaxial extensional behavior of metallocene polyethylenes. Polymer Engineering and Science, 2006, 46, 735-742.	3.1	1
252	Wall slip of linear polymers (HDPEs). , 2013, , .		1

#	Article	IF	CITATIONS
253	Cellulosic wood fibreâ€dual functional (<scp>Janus</scp>) mineral filler networks. Canadian Journal of Chemical Engineering, 2021, 99, 2398-2404.	1.7	1
254	Effect of Deformation Rate on the Mechanical Properties of Rectangular and Cruciform Arterial Samples: Uniaxial and Biaxial Testing. , 2007, , .		1
255	Moisture flow characteristics during radio frequency vacuum drying of thick lumber. Wood Science and Technology, 1997, 31, 265-277.	3.2	1
256	Authors' response to ?comments on ?start-up pressure transients in a capillary rheometer??. Polymer Engineering and Science, 1995, 35, 1482-1483.	3.1	0
257	Some comments on "computational analysis of techniques to determine extensional viscosity from entrance flows" [Rheol Acta 39:138-151 (2000)]. Rheologica Acta, 2001, 40, 401-402.	2.4	0
258	Modeling of Paste Extrusion in Semi-Solid State. International Journal of Material Forming, 2008, 1, 771-774.	2.0	0
259	Stability of the Annular Poiseuille Flow of a Newtonian Liquid with Slip along the Walls. AIP Conference Proceedings, 2008, , .	0.4	0
260	Structure, Stability and Rheological Properties of Zirconia Suspensions in the Presence of Nanocrystals: Effects of Ionic Strength . Physics of Fluids, 0, , .	4.0	0