
Adrian J Mcdonald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3092749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Representation of sea ice regimes in the Western Ross Sea, Antarctica, based on satellite imagery and AMPS wind data. Climate Dynamics, 2023, 60, 227-238.	3.8	1
2	Quantifying the Role of Atmospheric and Surface Albedo on Polar Amplification Using Satellite Observations and CMIP6 Model Output. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
3	Detection of supercooled liquid water containing clouds with ceilometers: development and evaluation of deterministic and data-driven retrievals. Atmospheric Measurement Techniques, 2022, 15, 3663-3681.	3.1	3
4	First evidence of microplastics in Antarctic snow. Cryosphere, 2022, 16, 2127-2145.	3.9	118
5	Comparing Satellite―and Groundâ€Based Observations of Cloud Occurrence Over High Southern Latitudes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033607.	3.3	11
6	Southern Ocean cloud and aerosol data: a compilation of measurements from the 2018 Southern Ocean Ross Sea Marine Ecosystems and Environment voyage. Earth System Science Data, 2021, 13, 3115-3153.	9.9	16
7	The Southern Ocean Radiative Bias, Cloud Compensating Errors, and Equilibrium Climate Sensitivity in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035310.	3.3	23
8	The state of the atmosphere in the 2016 southern Kerguelen Axis campaign region. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 174, .	1.4	9
9	A New Method to Evaluate Reanalyses Using Synoptic Patterns: An Example Application in the Ross Sea/Ross Ice Shelf Region. Earth and Space Science, 2020, 7, e2019EA000794.	2.6	12
10	A Comparison of AMPS Forecasts Near the Ross Sea Polynya With Controlled Meteorological Balloon Observations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030591.	3.3	3
11	Long-Term Analysis of Sea Ice Drift in the Western Ross Sea, Antarctica, at High and Low Spatial Resolution. Remote Sensing, 2020, 12, 1402.	4.0	11
12	Evaluation of Southern Ocean cloud in the HadGEM3 general circulation model and MERRA-2 reanalysis using ship-based observations. Atmospheric Chemistry and Physics, 2020, 20, 6607-6630.	4.9	24
13	Constraining the Surface Flux of Sea Spray Particles From the Southern Ocean. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032026.	3.3	20
14	Clusterâ€Based Evaluation of Model Compensating Errors: A Case Study of Cloud Radiative Effect in the Southern Ocean. Geophysical Research Letters, 2019, 46, 3446-3453.	4.0	15
15	The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry–climate model. Atmospheric Chemistry and Physics, 2019, 19, 15447-15466.	4.9	34
16	Regional Regimeâ€Based Evaluation of Presentâ€Day General Circulation Model Cloud Simulations Using Selfâ€Organizing Maps. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4259-4272.	3.3	18
17	An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification. Climate Dynamics, 2018, 51, 1639-1658.	3.8	18
18	An analysis of the cloud environment over the Ross Sea and Ross Ice Shelf using CloudSat/CALIPSO satellite observations: the importance of synoptic forcing. Atmospheric Chemistry and Physics, 2018, 18, 9723-9739.	4.9	14

Adrian J McDonald

#	Article	IF	CITATIONS
19	A Comparison of Cloud Classification Methodologies: Differences Between Cloud and Dynamical Regimes. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,173.	3.3	11
20	The evolution of zonally asymmetric austral ozone in a chemistry–climate model. Atmospheric Chemistry and Physics, 2017, 17, 14075-14084.	4.9	8
21	A comparison of Loon balloon observations and stratospheric reanalysis products. Atmospheric Chemistry and Physics, 2017, 17, 855-866.	4.9	34
22	Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region. Cryosphere, 2017, 11, 267-280.	3.9	24
23	Antarctic Wave Dynamics Mystery Discovered by Lidar, Radar and Imager. EPJ Web of Conferences, 2016, 119, 13004.	0.3	1
24	The influence of ozone forcing on blocking in the Southern Hemisphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,358.	3.3	5
25	An automated satellite cloud classification scheme using selfâ€organizing maps: Alternative ISCCP weather states. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,009.	3.3	19
26	A probabilistic study of the return of stratospheric ozone to 1960 levels. Geophysical Research Letters, 2016, 43, 9289-9297.	4.0	2
27	A Validation of the Antarctic Mesoscale Prediction System Using Self-Organizing Maps and High-Density Observations from SNOWWEB. Monthly Weather Review, 2016, 144, 3181-3200.	1.4	12
28	An Assessment of Future Southern Hemisphere Blocking Using CMIP5 Projections from Four GCMs. Journal of Climate, 2016, 29, 7599-7611.	3.2	17
29	The effect of ozone depletion on the Southern Annular Mode and stratosphereâ€ŧroposphere coupling. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6305-6312.	3.3	18
30	The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2167-2189.	3.3	35
31	Vertical evolution of potential energy density and vertical wave number spectrum of Antarctic gravity waves from 35 to 105 km at McMurdo (77.8°S, 166.7°E). Journal of Geophysical Research D: Atmospheres, 2015, 120, 2719-2737.	3.3	41
32	The use of synoptic climatology with general circulation model output over New Zealand. International Journal of Climatology, 2014, 34, 3426-3439.	3.5	12
33	A quantitative measure of polar vortex strength using the function <i>M</i> . Journal of Geophysical Research D: Atmospheres, 2014, 119, 5966-5985.	3.3	22
34	Synoptic climatology of the Ross Ice Shelf and Ross Sea region of Antarctica: <i>k</i> â€means clustering and validation. International Journal of Climatology, 2014, 34, 2330-2348.	3.5	44
35	Winter temperature tides from 30 to 110 km at McMurdo (77.8°S, 166.7°E), Antarctica: Lidar observatio and comparisons with WAM. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2846-2863.	ns 3.3	21

SNOWWEB - Wirelessly connected weather stations in Antarctica. , 2013, , .

#	Article	IF	CITATIONS
37	Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept. Atmospheric Chemistry and Physics, 2013, 13, 3237-3243.	4.9	3
38	Inertiaâ€gravity waves in Antarctica: A case study using simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E). Journal of Geophysical Research D: Atmospheres, 2013, 118, 2794-2808.	3.3	58
39	Quantifying the role of orographic gravity waves on polar stratospheric cloud occurrence in the Antarctic and the Arctic. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,493.	3.3	33
40	A technique to identify vortex air using carbon monoxide observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,719.	3.3	12
41	Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations. Journal of Geophysical Research, 2012, 117, .	3.3	25
42	The NIMO Monte Carlo model for box-air-mass factor and radiance calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 721-738.	2.3	6
43	Properties of the quasi 16 day wave derived from EOS MLS observations. Journal of Geophysical Research, 2011, 116, .	3.3	57
44	The effect of orographic gravity waves on Antarctic polar stratospheric cloud occurrence and composition. Journal of Geophysical Research, 2011, 116, .	3.3	37
45	Snow accumulation and compaction derived from GPR data near Ross Island, Antarctica. Cryosphere, 2011, 5, 391-404.	3.9	13
46	Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere. Atmospheric Chemistry and Physics, 2010, 10, 4295-4317.	4.9	24
47	Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COSMIC/FORMOSATâ€3 and Rayleigh lidar observations. Journal of Geophysical Research, 2010, 115, .	3.3	22
48	A new perspective on the longitudinal variability of the semidiurnal tide. Geophysical Research Letters, 2010, 37, .	4.0	10
49	Source regions for Antarctic MLT nonâ€migrating semidiurnal tides. Geophysical Research Letters, 2009, 36, .	4.0	28
50	Can gravity waves significantly impact PSC occurrence in the Antarctic?. Atmospheric Chemistry and Physics, 2009, 9, 8825-8840.	4.9	36
51	Identification of mixing barriers in chemistryâ€climate model simulations using Rényi entropy. Geophysical Research Letters, 2008, 35, .	4.0	7
52	Comparison of stratospheric measurements made by CHAMP radio occultation and Stratéole/Vorcore in situ data. Geophysical Research Letters, 2008, 35, .	4.0	11
53	A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations. Journal of Geophysical Research, 2007, 112, .	3.3	96
54	An improved measure of ozone depletion in the Antarctic stratosphere. Journal of Geophysical Research, 2007, 112, .	3.3	27

Adrian J McDonald

#	Article	IF	CITATIONS
55	Validation of AIRS v4 ozone profiles in the UTLS using ozonesondes from Lauder, NZ and Boulder, USA. Journal of Geophysical Research, 2007, 112, .	3.3	28
56	A climatology of tides in the Antarctic mesosphere and lower thermosphere. Journal of Geophysical Research, 2006, 111, .	3.3	72
57	Wind-profiler observations of gravity waves produced by convection at mid-latitudes. Atmospheric Chemistry and Physics, 2006, 6, 2825-2836.	4.9	10
58	The signature of mid-latitude convection observed by VHF wind-profiling radar. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	20
59	Interannual variability in Antarctic ozone depletion controlled by planetary waves and polar temperature. Geophysical Research Letters, 2005, 32, .	4.0	51
60	The effect of precipitation on wind-profiler clear air returns. Annales Geophysicae, 2004, 22, 3959-3970.	1.6	15
61	Three-dimensional X-band SAR imaging of a small conifer tree. International Journal of Remote Sensing, 2001, 22, 705-710.	2.9	18
62	View Zenith Angle Effects on the Forest Information Content of Three Spectral Indices. Remote Sensing of Environment, 2000, 72, 139-158.	11.0	35
63	Inertia-gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region. Annales Geophysicae, 1999, 17, 115.	1.6	18
64	Night-to-night changes in the characteristics of gravity waves at stratospheric and lower-mesospheric heights. Annales Geophysicae, 1998, 16, 229-237.	1.6	14