Giovanna C Varese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3092267/publications.pdf

Version: 2024-02-01

84 papers 2,851 citations

147566 31 h-index 197535 49 g-index

86 all docs 86 docs citations

86 times ranked 3820 citing authors

#	Article	IF	CITATIONS
1	Widespread Ability of Ligninolytic Fungi to Degrade Hazardous Organic Pollutants as the Basis for the Self-Purification Ability of Natural Ecosystems and for Mycoremediation Technologies. Applied Sciences (Switzerland), 2022, 12, 2164.	1.3	1
2	Dihydroauroglaucin Isolated from the Mediterranean Sponge Grantia compressa Endophyte Marine Fungus Eurotium chevalieri Inhibits Migration of Human Neuroblastoma Cells. Pharmaceutics, 2022, 14, 616.	2.0	2
3	Extraction of short chain chitooligosaccharides from fungal biomass and their use as promoters of arbuscular mycorrhizal symbiosis. Scientific Reports, 2021, 11, 3798.	1.6	11
4	The Essentials of Marine Biotechnology. Frontiers in Marine Science, 2021, 8, .	1.2	75
5	Low density polyethylene degradation by filamentous fungi. Environmental Pollution, 2021, 274, 116548.	3.7	52
6	<i>Trichoderma harzianum</i> ceratoâ€platanin enhances hydrolysis of lignocellulosic materials. Microbial Biotechnology, 2021, 14, 1699-1706.	2.0	6
7	Corollospora mediterranea: A Novel Species Complex in the Mediterranean Sea. Applied Sciences (Switzerland), 2021, 11, 5452.	1.3	9
8	Insights on Lulworthiales Inhabiting the Mediterranean Sea and Description of Three Novel Species of the Genus Paralulworthia. Journal of Fungi (Basel, Switzerland), 2021, 7, 940.	1.5	7
9	The role of cosubstrate and mixing on fungal biofilm efficiency in the removal of tannins. Environmental Technology (United Kingdom), 2020, 41, 3515-3523.	1.2	8
10	Ecofriendly laccases treatment to challenge micropollutants issue in municipal wastewaters. Environmental Pollution, 2020, 257, 113579.	3.7	35
11	Genome Sequence of Trichoderma lixii MUT3171, A Promising Strain for Mycoremediation of PAH-Contaminated Sites. Microorganisms, 2020, 8, 1258.	1.6	18
12	Shed Light in the DaRk LineagES of the Fungal Tree of Lifeâ€"STRES. Life, 2020, 10, 362.	1.1	16
13	Fungal Pretreatments on Non-Sterile Solid Digestate to Enhance Methane Yield and the Sustainability of Anaerobic Digestion. Sustainability, 2020, 12, 8549.	1.6	10
14	News from the Sea: A New Genus and Seven New Species in the Pleosporalean Families Roussoellaceae and Thyridariaceae. Diversity, 2020, 12, 144.	0.7	20
15	Fungal Diversity in the Neptune Forest: Comparison of the Mycobiota of Posidonia oceanica, Flabellia petiolata, and Padina pavonica. Frontiers in Microbiology, 2020, 11, 933.	1.5	13
16	Cerato-Platanins from Marine Fungi as Effective Protein Biosurfactants and Bioemulsifiers. International Journal of Molecular Sciences, 2020, 21, 2913.	1.8	27
17	The Sponge-Associated Fungus Eurotium chevalieri MUT 2316 and its Bioactive Molecules: Potential Applications in the Field of Antifouling. Marine Biotechnology, 2019, 21, 743-752.	1.1	28
18	Wastewater-Agar as a selection environment: A first step towards a fungal in-situ bioaugmentation strategy. Ecotoxicology and Environmental Safety, 2019, 171, 443-450.	2.9	6

#	Article	IF	CITATIONS
19	Occurrence of selected pharmaceuticals in wastewater treatment plants of Tuscany: An effect-based approach to evaluate the potential environmental impact. International Journal of Hygiene and Environmental Health, 2019, 222, 717-725.	2.1	62
20	Marine Fungi from the Sponge Grantia compressa: Biodiversity, Chemodiversity, and Biotechnological Potential. Marine Drugs, 2019, 17, 220.	2.2	54
21	The culturable mycobiota associated with the Mediterranean sponges <i>Aplysina cavernicola</i> , <i>Crambe crambe</i> and <i>Phorbas tenacior</i> . FEMS Microbiology Letters, 2019, 366, .	0.7	5
22	Preservation, Characterization and Exploitation of Microbial Biodiversity: The Perspective of the Italian Network of Culture Collections. Microorganisms, 2019, 7, 685.	1.6	33
23	Degradative properties of two newly isolated strains of the ascomycetes Fusarium oxysporum and Lecanicillium aphanocladii. International Microbiology, 2019, 22, 103-110.	1.1	13
24	Elbamycella rosea gen. et sp. nov. (Juncigenaceae, Torpedosporales) isolated from the Mediterranean Sea. MycoKeys, 2019, 55, 15-28.	0.8	4
25	Identification of a Sorbicillinoid-Producing Aspergillus Strain with Antimicrobial Activity Against Staphylococcus aureus: a New Polyextremophilic Marine Fungus from Barents Sea. Marine Biotechnology, 2018, 20, 502-511.	1.1	19
26	Tannery mixed liquors from an ecotoxicological and mycological point of view: Risks vs potential biodegradation application. Science of the Total Environment, 2018, 627, 835-843.	3.9	14
27	Fungi from industrial tannins: potential application in biotransformation and bioremediation of tannery wastewaters. Applied Microbiology and Biotechnology, 2018, 102, 4203-4216.	1.7	16
28	The effects of book disinfection to the airborne microbiological community in a library environment. Aerobiologia, 2018, 34, 29-44.	0.7	10
29	Biotransformation of industrial tannins by filamentous fungi. Applied Microbiology and Biotechnology, 2018, 102, 10361-10375.	1.7	28
30	Molecular and Microbiological Insights on the Enrichment Procedures for the Isolation of Petroleum Degrading Bacteria and Fungi. Frontiers in Microbiology, 2018, 9, 2543.	1.5	56
31	Basidiomycota isolated from the Mediterranean Sea – Phylogeny and putative ecological roles. Fungal Ecology, 2018, 36, 51-62.	0.7	20
32	Biosorption with autochthonous and allochthonous fungal biomasses for bioremediation and detoxification of landfill leachate. Environmental Earth Sciences, 2018, 77, 1.	1.3	4
33	Bioremediation of Landfill Leachate with Fungi: Autochthonous vs. Allochthonous Strains. Life, 2018, 8, 27.	1.1	27
34	Different Approaches to Discover Mycovirus Associated to Marine Organisms. Methods in Molecular Biology, 2018, 1746, 97-114.	0.4	19
35	Old Yellow Enzyme homologues in Mucor circinelloides: expression profile and biotransformation. Scientific Reports, 2017, 7, 12093.	1.6	8
36	The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Science of the Total Environment, 2017, 576, 310-318.	3.9	100

#	Article	IF	Citations
37	Recalcitrant Compounds Removal in Raw Leachate and Synthetic Effluents Using the White-Rot Fungus Bjerkandera adusta. Water (Switzerland), 2017, 9, 824.	1.2	23
38	The culturable mycobiota of Flabellia petiolata: First survey of marine fungi associated to a Mediterranean green alga. PLoS ONE, 2017, 12, e0175941.	1.1	59
39	Detection of volatile metabolites of moulds isolated from a contaminated library. Journal of Microbiological Methods, 2016, 128, 34-41.	0.7	16
40	Influence of plant genotype on the cultivable fungiÂassociated to tomato rhizosphere and roots in different soils. Fungal Biology, 2016, 120, 862-872.	1.1	39
41	The antimicrobial potential of algicolous marine fungi for counteracting multidrug-resistant bacteria: phylogenetic diversity and chemical profiling. Research in Microbiology, 2016, 167, 492-500.	1.0	14
42	Marine fungi as source of new hydrophobins. International Journal of Biological Macromolecules, 2016, 92, 1229-1233.	3.6	31
43	Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate. Science of the Total Environment, 2016, 569-570, 40-45.	3.9	106
44	Stimulation of laccases from <i>Trametes pubescens</i> : Use in dye decolorization and cotton bleaching. Preparative Biochemistry and Biotechnology, 2016, 46, 639-647.	1.0	9
45	Is digestate safe? A study on its ecotoxicity and environmental risk on a pig manure. Science of the Total Environment, 2016, 551-552, 127-132.	3.9	82
46	Identification of fungal ene-reductase activity by means of a functional screening. Fungal Biology, 2015, 119, 487-493.	1.1	12
47	PERN: an EU–Russia initiative for rhizosphere microbial resources. Trends in Biotechnology, 2015, 33, 377-380.	4.9	9
48	Evaluation of an eventual ecotoxicity induced by textile effluents using a battery of biotests. Environmental Science and Pollution Research, 2015, 22, 16700-16708.	2.7	12
49	Sink or swim: Updated knowledge on marine fungi associated with wood substrates in the Mediterranean Sea and hints about their potential to remediate hydrocarbons. Progress in Oceanography, 2015, 137, 140-148.	1.5	36
50	Biocatalysed reduction of carboxylic acids to primary alcohols in aqueous medium: A novel synthetic capability of the zygomycete fungus Syncephalastrum racemosum. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 83-88.	1.8	10
51	Mycobiota associated with the rhodophyte alien species <i><scp>A</scp>sparagopsis taxiformis</i> (<scp>D</scp> elile) <scp>T</scp> revisan de <scp>S</scp> aintâ€ <scp>L</scp> A©on in the <scp>M</scp> editerranean <scp>S</scp> ea. Marine Ecology, 2015, 36, 959-968.	0.4	18
52	FUNGAL LACCASES PRODUCTION USING TOMATO-BASED MEDIUM: A FACTORIAL DESIGN APPROACH. Environmental Engineering and Management Journal, 2015, 14, 1743-1750.	0.2	3
53	Dothideomycetes and Leotiomycetes sterile mycelia isolated from the Italian seagrass Posidonia oceanica based on rDNA data. SpringerPlus, 2014, 3, 508.	1.2	59
54	Mycological and ecotoxicological characterisation of landfill leachate before and after traditional treatments. Science of the Total Environment, 2014, 487, 335-341.	3.9	50

#	Article	IF	CITATIONS
55	Deposit of microbial strains in public service collections as part of the publication process to underpin good practice in science. SpringerPlus, 2014, 3, 208.	1.2	37
56	Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnology, 2013, 30, 685-694.	2.4	129
57	Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosystems, 2013, 147, 237-246.	0.8	104
58	The Bioremediation Potential of Different Ecophysiological Groups of Fungi. Soil Biology, 2013, , 29-49.	0.6	52
59	Integrated fungal biomass and activated sludge treatment for textile wastewaters bioremediation. Bioresource Technology, 2012, 123, 106-111.	4.8	69
60	Fungal Waste-Biomasses as Potential Low-Cost Biosorbents for Decolorization of Textile Wastewaters. Water (Switzerland), 2012, 4, 770-784.	1.2	14
61	Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay. Science of the Total Environment, 2012, 432, 389-395.	3.9	30
62	Influence of Culture Medium on Fungal Biomass Composition and Biosorption Effectiveness. Current Microbiology, 2012, 64, 50-59.	1.0	14
63	SELECTION OF STRAINS AND CARRIERS TO COMBINE FUNGI AND ACTIVATED SLUDGE IN WASTEWATER BIOREMEDIATION. Environmental Engineering and Management Journal, 2012, 11, 1789-1796.	0.2	10
64	Evaluation of toxicity, genotoxicity and environmental risk of simulated textile and tannery wastewaters with a battery of biotests. Ecotoxicology and Environmental Safety, 2011, 74, 866-873.	2.9	115
65	Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnology, 2011, 29, 38-45.	2.4	84
66	Cunninghamella elegans biomass optimisation for textile wastewater biosorption treatment: an analytical and ecotoxicological approach. Applied Microbiology and Biotechnology, 2011, 90, 343-352.	1.7	25
67	Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Antonie Van Leeuwenhoek, 2010, 98, 483-504.	0.7	29
68	Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microbial Cell Factories, 2010, 9, 10.	1.9	59
69	Industrial dye degradation and detoxification by basidiomycetes belonging to different eco-physiological groups. Journal of Hazardous Materials, 2010, 177, 260-267.	6.5	28
70	Scale-up of a bioprocess for textile wastewater treatment using Bjerkandera adusta. Bioresource Technology, 2010, 101, 3067-3075.	4.8	100
71	Antifungal activity of bis-azasqualenes, inhibitors of oxidosqualene cyclase. Mycoses, 2010, 53, 481-487.	1.8	3
72	Fungal Biosorption, An Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents. Water (Switzerland), 2010, 2, 550-565.	1.2	37

#	Article	IF	CITATIONS
73	Vitality and genetic fidelity of white-rot fungi mycelia following different methods of preservation. Mycological Research, 2009, 113, 1027-1038.	2.5	34
74	Decolourisation of model and industrial dyes by mitosporic fungi in different culture conditions. World Journal of Microbiology and Biotechnology, 2009, 25, 1363-1374.	1.7	19
75	Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresource Technology, 2009, 100, 2770-2776.	4.8	82
76	Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: Role of laccases and peroxidases. Journal of Hazardous Materials, 2009, 165, 1229-1233.	6.5	77
77	Bioremediation potential of basidiomycetes isolated from compost. Bioresource Technology, 2008, 99, 6626-6630.	4.8	22
78	Biosorption of simulated dyed effluents by inactivated fungal biomasses. Bioresource Technology, 2008, 99, 3559-3567.	4.8	69
79	Role of Enzyveba in the aerobic bioremediation and detoxification of a soil freshly contaminated by two different diesel fuels. International Biodeterioration and Biodegradation, 2008, 62, 153-161.	1.9	9
80	Decolourisation and detoxification of textile effluents by fungal biosorption. Water Research, 2008, 42, 2911-2920.	5.3	92
81	Long-Term Effects on Other Fungi Are Studied in Biological and Chemical Stump Treatments in the Fight against Heterobasidion annosum Coll Mycologia, 2003, 95, 379.	0.8	5
82	Relative abundance and potential dispersal range of intersterility groups of Heterobasidion annosum in pure and mixed forests. Canadian Journal of Botany, 2001, 79, 1057-1065.	1.2	29
83	Relative abundance and potential dispersal range of intersterility groups of <i>Heterobasidion annosum</i> in pure and mixed forests. Canadian Journal of Botany, 2001, 79, 1057-1065.	1.2	36
84	Effects of Biological and Chemical Treatments against Heterobasidion annosum on the Microfungal Communities of Picea abies Stumps. Mycologia, 1999, 91, 747.	0.8	10