Min Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3092187/publications.pdf

Version: 2024-02-01

759233 940533 1,010 16 12 16 citations h-index g-index papers 16 16 16 1205 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	GABA interneurons are the cellular trigger for ketamine $\hat{a} \in \mathbb{N}$ s rapid antidepressant actions. Journal of Clinical Investigation, 2020, 130, 1336-1349.	8.2	208
2	Gonadotropin inhibitory hormone inhibits basal forebrain vGluT2â€gonadotropinâ€releasing hormone neurons via a direct postsynaptic mechanism. Journal of Physiology, 2009, 587, 1401-1411.	2.9	151
3	Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nature Cell Biology, 2010, 12, 902-908.	10.3	143
4	GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. Journal of Clinical Investigation, 2016, 126, 2482-2494.	8.2	124
5	Calcium oscillations-coupled conversion of actin travelling waves to standing oscillations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1339-1344.	7.1	79
6	Ketamine rapidly reverses stress-induced impairments in GABAergic transmission in the prefrontal cortex in male rodents. Neurobiology of Disease, 2020, 134, 104669.	4.4	58
7	Inhibition of GABA interneurons in the mPFC is sufficient and necessary for rapid antidepressant responses. Molecular Psychiatry, 2021, 26, 3277-3291.	7.9	54
8	Cell-type specific modulation of NMDA receptors triggers antidepressant actions. Molecular Psychiatry, 2021, 26, 5097-5111.	7.9	48
9	Acetylcholinesterase Inhibitors Activate Septohippocampal GABAergic Neurons via Muscarinic but Not Nicotinic Receptors. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 535-543.	2.5	35
10	Tac1 Signaling Is Required for Sexual Maturation and Responsiveness of GnRH Neurons to Kisspeptin in the Male Mouse. Endocrinology, 2017, 158, 2319-2329.	2.8	31
11	Positive modulation of NMDA receptors by AGN-241751 exerts rapid antidepressant-like effects via excitatory neurons. Neuropsychopharmacology, 2021, 46, 799-808.	5.4	20
12	Comparative Study of Curvature Sensing Mediated by F-BAR and an Intrinsically Disordered Region of FBP17. IScience, 2020, 23, 101712.	4.1	18
13	Mechanobiology in cortical waves and oscillations. Current Opinion in Cell Biology, 2021, 68, 45-54.	5.4	16
14	A kinetic view of clathrin assembly and endocytic cargo sorting. Current Opinion in Cell Biology, 2021, 71, 130-138.	5.4	9
15	Supported Native Plasma Membranes as Platforms for the Reconstitution and Visualization of Endocytic Membrane Budding. Methods in Cell Biology, 2012, 108, 1-18.	1.1	8
16	Positive modulation of N-methyl-D-aspartate receptors in the mPFC reduces the spontaneous recovery of fear. Molecular Psychiatry, 2022, 27, 2580-2589.	7.9	8