Amjad Farooq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/309203/publications.pdf

Version: 2024-02-01

80

all docs

		172386	149623
80	3,422	29	56
papers	citations	h-index	g-index

80

times ranked

5151

citing authors

80

docs citations

#	Article	IF	CITATIONS
1	Structure and regulation of MAPK phosphatases. Cellular Signalling, 2004, 16, 769-779.	1.7	402
2	Structure and conserved RNA binding of the PAZ domain. Nature, 2003, 426, 469-474.	13.7	395
3	Structural Basis of Lysine-Acetylated HIV-1 Tat Recognition by PCAF Bromodomain. Molecular Cell, 2002, 9, 575-586.	4.5	229
4	Whole-Exome Sequencing Links a Variant in DHDDS to Retinitis Pigmentosa. American Journal of Human Genetics, 2011, 88, 201-206.	2.6	155
5	MASP1 Mutations in Patients with Facial, Umbilical, Coccygeal, and Auditory Findings of Carnevale, Malpuech, OSA, and Michels Syndromes. American Journal of Human Genetics, 2010, 87, 679-686.	2.6	128
6	Evidence That Bilayer Bending Rigidity Affects Membrane Protein Folding. Biochemistry, 1997, 36, 197-203.	1.2	117
7	Structures of YAP protein domains reveal promising targets for development of new cancer drugs. Seminars in Cell and Developmental Biology, 2012, 23, 827-833.	2.3	113
8	Solution Structure of ERK2 Binding Domain of MAPK Phosphatase MKP-3. Molecular Cell, 2001, 7, 387-399.	4.5	112
9	A missense mutation in DCDC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell and supporting cell cilia length regulation. Human Molecular Genetics, 2015, 24, 2482-2491.	1.4	87
10	Identification, basic characterization and evolutionary analysis of differentially spliced mRNA isoforms of human YAP1 gene. Gene, 2012, 509, 215-222.	1.0	86
11	A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nature Structural and Molecular Biology, 2003, 10, 187-196.	3.6	85
12	Retinal Binding during Folding and Assembly of the Membrane Protein Bacteriorhodopsinâ€. Biochemistry, 1996, 35, 5902-5909.	1.2	70
13	FAM65B is a membrane-associated protein of hair cell stereocilia required for hearing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9864-9868.	3.3	70
14	Structural and Functional Diversity of Estrogen Receptor Ligands. Current Topics in Medicinal Chemistry, 2015, 15, 1372-1384.	1.0	59
15	Muc4–ErbB2 Complex Formation and Signaling in Polarized CACO-2 Epithelial Cells Indicate That Muc4 Acts as an Unorthodox Ligand for ErbB2. Molecular Biology of the Cell, 2006, 17, 2931-2941.	0.9	57
16	Structural Insights of the Specificity and Catalysis of a Viral Histone H3 Lysine 27 Methyltransferase. Journal of Molecular Biology, 2006, 359, 86-96.	2.0	55
17	Y65C Missense Mutation in the WW Domain of the Golabi-Ito-Hall Syndrome Protein PQBP1 Affects Its Binding Activity and Deregulates Pre-mRNA Splicing. Journal of Biological Chemistry, 2010, 285, 19391-19401.	1.6	53
18	Solution Structure of the MAPK Phosphatase PAC-1 Catalytic Domain. Structure, 2003, 11, 155-164.	1.6	48

#	Article	IF	CITATIONS
19	WW or WoW: The WW domains in a union of bliss. IUBMB Life, 2005, 57, 773-778.	1.5	48
20	Structure of the Neural (N-) Cadherin Prodomain Reveals a Cadherin Extracellular Domain-like Fold without Adhesive Characteristics. Structure, 2004, 12, 793-805.	1.6	47
21	SCO2 mutations cause early-onset axonal Charcot-Marie-Tooth disease associated with cellular copper deficiency. Brain, 2018, 141, 662-672.	3.7	46
22	Intermediates in the Assembly of Bacteriorhodopsin Investigated by Time-Resolved Absorption Spectroscopy. FEBS Journal, 1997, 246, 674-680.	0.2	42
23	ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5993-5998.	3.3	42
24	SH3 Domains of Grb2 Adaptor Bind to PXÏ PXR Motifs Within the Sos1 Nucleotide Exchange Factor in a Discriminate Manner. Biochemistry, 2009, 48, 4074-4085.	1.2	39
25	Biophysical Basis of the Binding of WWOX Tumor Suppressor to WBP1 and WBP2 Adaptors. Journal of Molecular Biology, 2012, 422, 58-74.	2.0	39
26	S-Nitrosylation of ApoE in Alzheimer's Disease. Biochemistry, 2011, 50, 3405-3407.	1.2	36
27	Phosphotyrosine Binding Domains of Shc and Insulin Receptor Substrate 1 Recognize the NPXpY Motif in a Thermodynamically Distinct Manner. Journal of Biological Chemistry, 1999, 274, 6114-6121.	1.6	35
28	New Insights into the Catalytic Activation of the MAPK Phosphatase PAC-1 Induced by its Substrate MAPK ERK2 Binding. Journal of Molecular Biology, 2005, 354, 777-788.	2.0	35
29	Biophysical characterization reveals structural disorder in the developmental transcriptional regulator LBH. Biochemical and Biophysical Research Communications, 2010, 391, 1104-1109.	1.0	32
30	Biophysical Analysis of Binding of WW Domains of the YAP2 Transcriptional Regulator to PPXY Motifs within WBP1 and WBP2 Adaptors. Biochemistry, 2011, 50, 9616-9627.	1.2	30
31	Molecular insights into the WW domain of the Golabi″toâ€Hall syndrome protein PQBP1. FEBS Letters, 2012, 586, 2795-2799.	1.3	30
32	FRS2 PTB Domain Conformation Regulates Interactions with Divergent Neurotrophic Receptors. Journal of Biological Chemistry, 2002, 277, 17088-17094.	1.6	28
33	Structural and thermodynamic consequences of the replacement of zinc with environmental metals on estrogen receptor α–DNA interactions. Journal of Molecular Recognition, 2011, 24, 1007-1017.	1.1	27
34	Grb2 adaptor undergoes conformational change upon dimerization. Archives of Biochemistry and Biophysics, 2008, 475, 25-35.	1.4	26
35	Molecular Origin of the Binding of WWOX Tumor Suppressor to ErbB4 Receptor Tyrosine Kinase. Biochemistry, 2013, 52, 9223-9236.	1.2	26
36	Coupling of folding and DNA-binding in the bZIP domains of Jun–Fos heterodimeric transcription factor. Archives of Biochemistry and Biophysics, 2008, 473, 48-60.	1.4	25

#	Article	IF	CITATIONS
37	Single Nucleotide Variants of the TGACTCA Motif Modulate Energetics and Orientation of Binding of the Jun-Fos Heterodimeric Transcription Factor. Biochemistry, 2009, 48, 1975-1983.	1.2	25
38	Coupling of Folding and Binding in the PTB Domain of the Signaling Protein Shc. Structure, 2003, 11, 905-913.	1.6	24
39	Molecular Basis of Distinct Interactions Between Dok1 PTB Domain and Tyrosine-phosphorylated EGF Receptor. Journal of Molecular Biology, 2004, 343, 1147-1155.	2.0	23
40	Structural basis of the differential binding of the SH3 domains of Grb2 adaptor to the guanine nucleotide exchange factor Sos1. Archives of Biochemistry and Biophysics, 2008, 479, 52-62.	1.4	19
41	Assembly of the Sos1–Grb2–Gab1 ternary signaling complex is under allosteric control. Archives of Biochemistry and Biophysics, 2010, 494, 216-225.	1.4	19
42	A multi-trimeric fusion of CD40L and gp100 tumor antigen activates dendritic cells and enhances survival in a B16-F10 melanoma DNA vaccine model. Vaccine, 2015, 33, 4798-4806.	1.7	18
43	Binding of the ERα Nuclear Receptor to DNA Is Coupled to Proton Uptake. Biochemistry, 2010, 49, 5978-5988.	1.2	17
44	pH modulates the binding of early growth response proteinÂ1 transcription factor to <scp>DNA</scp> . FEBS Journal, 2013, 280, 3669-3684.	2.2	17
45	Evidence that the bZIP domains of the Jun transcription factor bind to DNA as monomers prior to folding and homodimerization. Archives of Biochemistry and Biophysics, 2008, 480, 75-84.	1.4	16
46	Ligand binding to <scp>WW</scp> tandem domains of <scp>YAP</scp> 2 transcriptional regulator is under negative cooperativity. FEBS Journal, 2014, 281, 5532-5551.	2.2	16
47	Molecular basis of the binding of YAP transcriptional regulator to the ErbB4 receptor tyrosine kinase. Biochimie, 2014, 101, 192-202.	1.3	16
48	DNA Plasticity Is a Key Determinant of the Energetics of Binding of Jun-Fos Heterodimeric Transcription Factor to Genetic Variants of TGACGTCA Motif. Biochemistry, 2009, 48, 12213-12222.	1.2	15
49	Dysfunction of GRAP, encoding the GRB2-related adaptor protein, is linked to sensorineural hearing loss. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1347-1352.	3.3	15
50	Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms. Journal of Molecular Recognition, 2011, 24, 585-596.	1.1	13
51	Ligand Binding and Membrane Insertion Compete with Oligomerization of the BcIXL Apoptotic Repressor. Journal of Molecular Biology, 2012, 416, 57-77.	2.0	13
52	Phosphorylation of Tyr188 in the WW domain of YAP1 plays an essential role in YAP1-induced cellular transformation. Cell Cycle, 2016, 15, 2497-2505.	1.3	13
53	Thermodynamic analysis of the heterodimerization of leucine zippers of Jun and Fos transcription factors. Biochemical and Biophysical Research Communications, 2008, 375, 634-638.	1.0	12
54	Dissecting the role of leucine zippers in the binding of bZIP domains of Jun transcription factor to DNA. Biochemical and Biophysical Research Communications, 2010, 394, 1030-1035.	1.0	12

#	Article	IF	CITATIONS
55	Genetic variations within the ERE motif modulate plasticity and energetics of binding of DNA to the ERα nuclear receptor. Archives of Biochemistry and Biophysics, 2011, 507, 262-270.	1.4	12
56	Energetic coupling along an allosteric communication channel drives the binding of Junâ€Fos heterodimeric transcription factor to DNA. FEBS Journal, 2011, 278, 2090-2104.	2.2	12
57	Acidic pH promotes oligomerization and membrane insertion of the BclXL apoptotic repressor. Archives of Biochemistry and Biophysics, 2012, 528, 32-44.	1.4	12
58	Bivalent binding drives the formation of the Grb2–Gab1 signaling complex in a noncooperative manner. FEBS Journal, 2012, 279, 2156-2173.	2,2	12
59	Structure of the Adaptor Protein p14 Reveals a Profilin-like Fold with Distinct Function. Journal of Molecular Biology, 2005, 347, 309-321.	2.0	11
60	Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor. Experimental Biology and Medicine, 2015, 240, 361-374.	1.1	11
61	PTB or Not to Be: Promiscuous, Tolerant and Bizarro Domains Come of Age. IUBMB Life, 2004, 56, 547-557.	1.5	10
62	Multivalent Binding and Facilitated Diffusion Account for the Formation of the Grb2–Sos1 Signaling Complex in a Cooperative Manner. Biochemistry, 2012, 51, 2122-2135.	1.2	9
63	Biophysical basis of the promiscuous binding of Bâ€cell lymphoma protein 2 apoptotic repressor to BH3 ligands. Journal of Molecular Recognition, 2013, 26, 501-513.	1.1	8
64	Allostery mediates ligand binding to Grb2 adaptor in a mutually exclusive manner. Journal of Molecular Recognition, 2013, 26, 92-103.	1.1	8
65	Novel variant p.E269K confirms causative role of <i>PLS1</i> mutations in autosomal dominant hearing loss. Clinical Genetics, 2019, 96, 575-578.	1.0	8
66	Kinetic Evidence for an Obligatory Intermediate in the Folding of the Membrane Protein Bacteriorhodopsin. Biochemistry, 1998, 37, 15170-15176.	1.2	7
67	Structural landscape of the proline-rich domain of Sos1 nucleotide exchange factor. Biophysical Chemistry, 2013, 175-176, 54-62.	1.5	7
68	Allostery mediates ligand binding to WWOX tumor suppressor via a conformational switch. Journal of Molecular Recognition, 2015, 28, 220-231.	1.1	7
69	Effect of osmolytes on the binding of <scp>EGR</scp> 1 transcription factor to <scp>DNA</scp> . Biopolymers, 2015, 103, 74-87.	1.2	7
70	Interplay between HGAL and Grb2 proteins regulates B-cell receptor signaling. Blood Advances, 2019, 3, 2286-2297.	2,5	7
71	Heat-induced fibrillation of BclXL apoptotic repressor. Biophysical Chemistry, 2013, 179, 12-25.	1.5	6
72	Molecular determinants of the binding specificity of BH3 ligands to BclXL apoptotic repressor. Biopolymers, 2014, 101, 573-582.	1.2	5

#	Article	IF	CITATIONS
73	1H, 13C and 15N resonance assignments of the ERK2 binding domain of the MAPK phosphatase MKP-3. Journal of Biomolecular NMR, 2001, 19, 195-196.	1.6	2
74	Role of promoter DNA sequence variations on the binding of EGR1 transcription factor. Archives of Biochemistry and Biophysics, 2014, 549, 1-11.	1.4	2
75	Enthalpic factors override the polyelectrolyte effect in the binding of EGR1 transcription factor to DNA. Journal of Molecular Recognition, 2014, 27, 82-91.	1.1	2
76	1H, 13C and 15N resonance assignments of a viral SET domain histone lysine methyltransferase. Journal of Biomolecular NMR, 2003, 26, 279-280.	1.6	0
77	1H, 13C and 15N resonance assignments of the catalytic domain of human MAPK phosphatase, PAC-1. Journal of Biomolecular NMR, 2003, 25, 79-80.	1.6	O
78	1H, 15N and 13C resonance assignments for the PTB domain of the signaling protein Shc. Journal of Biomolecular NMR, 2003, 25, 255-256.	1.6	0
79	Letter to the Editor:1H,13C and15N resonance assignments for the N-cadherin prodomain. Journal of Biomolecular NMR, 2004, 28, 87-88.	1.6	O
80	Letter to the editor: Resonance assignments for the endosomal adaptor protein p14. Journal of Biomolecular NMR, 2004, 30, 367-368.	1.6	O