David J Wald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3091685/publications.pdf Version: 2024-02-01

	36203	26548
13,342	51	107
citations	h-index	g-index
151	151	6926
docs citations	times ranked	citing authors
	13,342 citations 151 docs citations	13,34251citationsh-index151151docs citations151times ranked

#	Article	IF	CITATIONS
1	ShakeMap operations, policies, and procedures. Earthquake Spectra, 2022, 38, 756-777.	1.6	31
2	The US Geological Survey ground failure product: Near-real-time estimates of earthquake-triggered landslides and liquefaction. Earthquake Spectra, 2022, 38, 5-36.	1.6	16
3	Comment on "Which Earthquake Accounts Matter?―by Susan E. Hough and Stacey S. Martin. Seismological Research Letters, 2022, 93, 500-505.	0.8	4
4	Earthquakes, ShakeCast. Encyclopedia of Earth Sciences Series, 2021, , 312-316.	0.1	0
5	Earthquakes, Did You Feel It?. Encyclopedia of Earth Sciences Series, 2021, , 278-282.	0.1	0
6	Earthquakes, PAGER. Encyclopedia of Earth Sciences Series, 2021, , 308-312.	0.1	0
7	Earthquakes, ShakeMap. Encyclopedia of Earth Sciences Series, 2021, , 316-321.	0.1	Ο
8	Quantifying nuisance ground motion thresholds for induced earthquakes. Earthquake Spectra, 2021, 37, 789-802.	1.6	7
9	USGS Nearâ€Realâ€Time Products—and Their Use—for the 2018 Anchorage Earthquake. Seismological Research Letters, 2020, 91, 94-113.	0.8	19
10	A domestic earthquake impact alert protocol based on the combined USGS PAGER and FEMA Hazus loss estimation systems. Earthquake Spectra, 2020, 36, 164-182.	1.6	12
11	Human Behavioral Response in the 2019 Ridgecrest, California, Earthquakes: Assessing Immediate Actions Based on Data from "Did You Feel It?― Bulletin of the Seismological Society of America, 2020, ,	1.1	8
12	An efficient Bayesian framework for updating PAGER loss estimates. Earthquake Spectra, 2020, 36, 1719-1742.	1.6	6
13	Practical limitations of earthquake early warning. Earthquake Spectra, 2020, 36, 1412-1447.	1.6	59
14	A global hybrid <i>V_S</i> ₃₀ map with a topographic slope–based default and regional map insets. Earthquake Spectra, 2020, 36, 1570-1584.	1.6	82
15	USCS "Did You Feel It?â€â€"Science and Lessons From 20 Years of Citizen Science-Based Macroseismology. Frontiers in Earth Science, 2020, 8, .	0.8	33
16	Value at Induced Risk: Injectionâ€Induced Seismic Risk From Lowâ€Probability, Highâ€Impact Events. Geophysical Research Letters, 2020, 47, e2019GL085878.	1.5	29
17	Estimating Rupture Dimensions of Three Major Earthquakes in Sichuan, China, for Early Warning and Rapid Loss Estimates. Bulletin of the Seismological Society of America, 2020, 110, 920-936.	1.1	11
18	Earthquakes, ShakeCast. Encyclopedia of Earth Sciences Series, 2020, , 1-5.	0.1	3

#	Article	IF	CITATIONS
19	Earthquakes, Did You Feel It?. Encyclopedia of Earth Sciences Series, 2020, , 1-5.	0.1	Ο
20	Global Earthquake Response with Imaging Geodesy: Recent Examples from the USGS NEIC. Remote Sensing, 2019, 11, 1357.	1.8	28
21	Earthquakes, PAGER. Encyclopedia of Earth Sciences Series, 2019, , 1-5.	0.1	1
22	Earthquakes, ShakeMap. Encyclopedia of Earth Sciences Series, 2019, , 1-6.	0.1	1
23	Improving Nearâ€Realâ€Time Coseismic Landslide Models: Lessons Learned from the 2016 KaikÅura, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 2018, 108, 1649-1664.	1.1	48
24	Spatial and Spectral Interpolation of Groundâ€Motion Intensity Measure Observations. Bulletin of the Seismological Society of America, 2018, 108, 866-875.	1.1	81
25	The Intensity Signature of Induced Seismicity. Bulletin of the Seismological Society of America, 2018, 108, 1080-1086.	1.1	15
26	Integrate Urban‣cale Seismic Hazard Analyses with the U.S. National Seismic Hazard Model. Seismological Research Letters, 2018, 89, 967-970.	0.8	5
27	Stronger Peak Ground Motion, Beyond the Threshold to Initiate a Response, Does Not Lead to Larger Stream Discharge Responses to Earthquakes. Geophysical Research Letters, 2018, 45, 6523-6531.	1.5	9
28	A Global Empirical Model for Nearâ€Realâ€Time Assessment of Seismically Induced Landslides. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1835-1859.	1.0	135
29	ShakeMap-based prediction of earthquake-induced mass movements in Switzerland calibrated on historical observations. Natural Hazards, 2018, 92, 1211-1235.	1.6	9
30	Computing spatial correlation of ground motion intensities for ShakeMap. Computers and Geosciences, 2017, 99, 145-154.	2.0	27
31	Using structural damage statistics to derive macroseismic intensity within the Kathmandu valley for the 2015 M7.8 Gorkha, Nepal earthquake. Tectonophysics, 2017, 714-715, 158-172.	0.9	19
32	Uncertainty in <i>V</i> _{<i>S</i>30} â€Based Site Response. Bulletin of the Seismological Society of America, 2016, 106, 453-463.	1.1	20
33	Ground Motion to Intensity Conversion Equations (GMICEs): A Global Relationship and Evaluation of Regional Dependency. Bulletin of the Seismological Society of America, 2015, 105, 1476-1490.	1.1	81
34	A Geospatial Liquefaction Model for Rapid Response and Loss Estimation. Earthquake Spectra, 2015, 31, 1813-1837.	1.6	59
35	The Mw 6.0 24 August 2014 South Napa Earthquake. Seismological Research Letters, 2015, 86, 309-326.	0.8	70
36	Rapid Characterization of the 2015 <i>M</i> _w Â7.8 Gorkha, Nepal, Earthquake Sequence and Its Seismotectonic Context. Seismological Research Letters, 2015, 86, 1557-1567.	0.8	80

#	Article	IF	CITATIONS
37	A VS30 Map for California with Geologic and Topographic Constraints. Bulletin of the Seismological Society of America, 2014, 104, 2313-2321.	1.1	85
38	Development of a globally applicable model for near real-time prediction of seismically induced landslides. Engineering Geology, 2014, 173, 54-65.	2.9	88
39	Geophysical Advances Triggered by 1964 Great Alaska Earthquake. Eos, 2014, 95, 141-142.	0.1	2
40	Intensity Prediction Equations for North America. Bulletin of the Seismological Society of America, 2014, 104, 3084-3093.	1.1	51
41	Estimating Economic Losses from Earthquakes Using an Empirical Approach. Earthquake Spectra, 2013, 29, 309-324.	1.6	39
42	Trauma Signature Analysis of the Great East Japan Disaster: Guidance for Psychological Consequences. Disaster Medicine and Public Health Preparedness, 2013, 7, 201-214.	0.7	17
43	Active tectonics around the Mediterranean region: site studies and application of new methodologies. Annals of Geophysics, 2013, 55, .	0.5	1
44	Fault Extent Estimation for Near-Real-Time Ground-Shaking Map Computation Purposes. Bulletin of the Seismological Society of America, 2012, 102, 661-679.	1.1	23
45	A Global Earthquake Discrimination Scheme to Optimize Ground-Motion Prediction Equation Selection. Bulletin of the Seismological Society of America, 2012, 102, 185-203.	1.1	41
46	Probabilistic Relationships between Ground-Motion Parameters and Modified Mercalli Intensity in California. Bulletin of the Seismological Society of America, 2012, 102, 204-221.	1.1	289
47	Slab1.0: A threeâ€dimensional model of global subduction zone geometries. Journal of Geophysical Research, 2012, 117, .	3.3	831
48	Intensity attenuation for active crustal regions. Journal of Seismology, 2012, 16, 409-433.	0.6	71
49	USGS "Did You Feel It?―Internet-based macroseismic intensity maps. Annals of Geophysics, 2012, 54, .	0.5	76
50	Developing Empirical Collapse Fragility Functions for Global Building Types. Earthquake Spectra, 2011, 27, 775-795.	1.6	99
51	Earthquake Impact Scale. Natural Hazards Review, 2011, 12, 125-139.	0.8	22
52	88 Hours: The U.S. Geological Survey National Earthquake Information Center Response to the 11 March 2011 Mw 9.0 Tohoku Earthquake. Seismological Research Letters, 2011, 82, 481-493.	0.8	70
53	Earthquake Casualty Models Within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) System. Advances in Natural and Technological Hazards Research, 2011, , 83-94.	1.1	56
54	Earthquakes, PAGER. Encyclopedia of Earth Sciences Series, 2011, , 243-245.	0.1	0

#	Article	IF	CITATIONS
55	Earthquakes, Shake Map. Encyclopedia of Earth Sciences Series, 2011, , 245-248.	0.1	Ο
56	An Empirical Model for Global Earthquake Fatality Estimation. Earthquake Spectra, 2010, 26, 1017-1037.	1.6	91
57	Global earthquake casualties due to secondary effects: a quantitative analysis for improving rapid loss analyses. Natural Hazards, 2010, 52, 319-328.	1.6	124
58	A Global Building Inventory for Earthquake Loss Estimation and Risk Management. Earthquake Spectra, 2010, 26, 731-748.	1.6	89
59	A Revised Ground-Motion and Intensity Interpolation Scheme for ShakeMap. Bulletin of the Seismological Society of America, 2010, 100, 3083-3096.	1.1	110
60	Traveltime Tables for iasp91 and ak135. Seismological Research Letters, 2009, 80, 260-262.	0.8	17
61	An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling. Bulletin of Earthquake Engineering, 2009, 7, 701-718.	2.3	56
62	Developing framework to constrain the geometry of the seismic rupture plane on subduction interfaces <i>a priori</i> - a probabilistic approach. Geophysical Journal International, 2009, 176, 951-964.	1.0	41
63	Advancing techniques to constrain the geometry of the seismic rupture plane on subduction interfaces a priori: Higherâ€order functional fits. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	35
64	PAGER-CAT: A Composite Earthquake Catalog for Calibrating Global Fatality Models. Seismological Research Letters, 2009, 80, 57-62.	0.8	84
65	On the Use of High-Resolution Topographic Data as a Proxy for Seismic Site Conditions (VS30). Bulletin of the Seismological Society of America, 2009, 99, 935-943.	1.1	273
66	Using ShakeCast and ShakeMap for Lifeline Post-Earthquake Response and Earthquake Scenario Planning. , 2009, , .		1
67	The USGS Earthquake Notification Service (ENS): Customizable Notifications of Earthquakes around the Globe. Seismological Research Letters, 2008, 79, 103-110.	0.8	14
68	ShakeCast: Automating and Improving the Use of ShakeMap for Post-Earthquake Decision-Making and Response. Earthquake Spectra, 2008, 24, 533-553.	1.6	65
69	Using ShakeMap and ShakeCast to Prioritize Post-Earthquake Dam Inspections. , 2008, , .		4
70	Topographic Slope as a Proxy for Seismic Site Conditions and Amplification. Bulletin of the Seismological Society of America, 2007, 97, 1379-1395.	1.1	632
71	Seismicity Associated with the Sumatra-Andaman Islands Earthquake of 26 December 2004. Bulletin of the Seismological Society of America, 2007, 97, S25-S42.	1.1	52
72	"Did You Feel It?" Intensity Data: A Surprisingly Good Measure of Earthquake Ground Motion. Seismological Research Letters, 2007, 78, 362-368.	0.8	232

#	Article	IF	CITATIONS
73	Advanced National Seismic System delivers improved information. Eos, 2006, 87, 365.	0.1	4
74	Rupture Process of the 2004 Sumatra-Andaman Earthquake. Science, 2005, 308, 1133-1139.	6.0	637
75	The Effects of Earthquake Measurement Concepts and Magnitude Anchoring on Individuals' Perceptions of Earthquake Risk. Earthquake Spectra, 2005, 21, 987-1008.	1.6	33
76	A Teleseismic Study of the 2002 Denali Fault, Alaska, Earthquake and Implications for Rapid Strong-Motion Estimation. Earthquake Spectra, 2004, 20, 617-637.	1.6	29
77	Observed and Simulated Ground Motions in the San Bernardino Basin Region for the Hector Mine, California, Earthquake. Bulletin of the Seismological Society of America, 2004, 94, 131-146.	1.1	39
78	SIGIRR, a negative regulator of Toll-like receptor–interleukin 1 receptor signaling. Nature Immunology, 2003, 4, 920-927.	7.0	540
79	Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research, 2003, 108, .	3.3	168
80	Bayesian Estimations of Peak Ground Acceleration and 5% Damped Spectral Acceleration from Modified Mercalli Intensity Data. Earthquake Spectra, 2003, 19, 511-529.	1.6	12
81	Aftershocks and Triggered Events of the Great 1906 California Earthquake. Bulletin of the Seismological Society of America, 2003, 93, 2160-2186.	1.1	28
82	Development of a Shakemap-Based, Earthquake Response System within Caltrans. , 2003, , 113.		2
83	Source Description of the 1999 Hector Mine, California, Earthquake, Part II: Complexity of Slip History. Bulletin of the Seismological Society of America, 2002, 92, 1208-1226.	1.1	157
84	Instrumental Intensity Distribution for the Hector Mine, California, and the Chi-Chi, Taiwan, Earthquakes: Comparison of Two Methods. Bulletin of the Seismological Society of America, 2002, 92, 2145-2162.	1.1	19
85	Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis. Bulletin of the Seismological Society of America, 2002, 92, 1192-1207.	1.1	455
86	New Mesozoic apparent polar wander path for south China: Tectonic consequences. Journal of Geophysical Research, 2001, 106, 8493-8520.	3.3	112
87	Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions: 2. Combining seismic and geodetic data. Journal of Geophysical Research, 2001, 106, 8767-8788.	3.3	94
88	Resolution analysis of finite fault source inversion using one- and three-dimensional Green's functions: 1. Strong motions. Journal of Geophysical Research, 2001, 106, 8745-8766.	3.3	104
89	Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan, Earthquake. Geophysical Research Letters, 2001, 28, 4379-4382.	1.5	53
90	Southern California Seismic Network: Caltech/USGS Element of TriNet 1997-2001. Seismological Research Letters, 2001, 72, 690-704.	0.8	40

#	Article	IF	CITATIONS
91	Basin Structure Estimation by Waveform Modeling: Forward and Inverse Methods. Bulletin of the Seismological Society of America, 2000, 90, 964-976.	1.1	19
92	Preliminary Report on the 16 October 1999 M 7.1 Hector Mine, California, Earthquake. Seismological Research Letters, 2000, 71, 11-23.	0.8	91
93	The 1998 Southern California Seismic Network Bulletin. Seismological Research Letters, 1999, 70, 404-416.	0.8	1
94	Utilization of the Internet for Rapid Community Intensity Maps. Seismological Research Letters, 1999, 70, 680-697.	0.8	192
95	Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 1999, 15, 557-564.	1.6	651
96	Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters, 1999, 70, 59-80.	0.8	784
97	TriNet "ShakeMapsâ€: Rapid Generation of Peak Ground Motion and Intensity Maps for Earthquakes in Southern California. Earthquake Spectra, 1999, 15, 537-555.	1.6	518
98	Foreshocks and aftershocks of the great 1857 California earthquake. Bulletin of the Seismological Society of America, 1999, 89, 1109-1120.	1.1	29
99	Nonlinear Site Response: Where We're At (A report from a SCEC/PEER seminar and workshop). Seismological Research Letters, 1998, 69, 230-234.	0.8	38
100	Dynamic stress changes during earthquake rupture. Bulletin of the Seismological Society of America, 1998, 88, 512-522.	1.1	133
101	Surfing the Internet for Strong-Motion Data. Seismological Research Letters, 1997, 68, 766-769.	0.8	5
102	The 1996 Southern California Network Bulletin. Seismological Research Letters, 1997, 68, 923-929.	0.8	2
103	Comment on "The 1946 Hispaniola earthquake and the tectonics of the North America-Caribbean Plate Boundary Zone, northeastern Hispaniola―by R. M. Russo and A. Villasenor. Journal of Geophysical Research, 1997, 102, 785-792.	3.3	14
104	Slip History of the 1995 Kobe, Japan, Earthquake Determined from Strong Motion, Teleseismic, and Geodetic Data Journal of Physics of the Earth, 1996, 44, 489-503.	1.4	136
105	The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, <scp>GPS</scp> , and leveling data. Bulletin of the Seismological Society of America, 1996, 86, S49-S70.	1.1	367
106	Recorded Ground and Structure Motions. Earthquake Spectra, 1995, 11, 13-96.	1.6	11
107	A Preliminary Dislocation Model for the 1995 Kobe (Hyogo-ken Nanbu), Japan, Earthquake Determined from Strong Motion and Teleseismic Waveforms. Seismological Research Letters, 1995, 66, 22-28.	0.8	23
108	Overlapping fault planes of the 1971 San Fernando and 1994 Northridge, California earthquakes. Geophysical Research Letters, 1995, 22, 1033-1036.	1.5	60

#	ARTICLE	IF	CITATIONS
109	Response of High-Rise and Base-Isolated Buildings to a Hypothetical Mw 7.0 Blind Thrust Earthquake. Science, 1995, 267, 206-211.	6.0	290
110	Near-Source Ground Motion and its Effects on Flexible Buildings. Earthquake Spectra, 1995, 11, 569-605.	1.6	647
111	The Magnitude 6.7 Northridge, California, Earthquake of 17 January 1994. Science, 1994, 266, 389-397.	6.0	117
112	Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bulletin of the Seismological Society of America, 1994, 84, 668-691.	1.1	672
113	Source study of the 1906 San Francisco earthquake. Bulletin of the Seismological Society of America, 1993, 83, 981-1019.	1.1	87
114	Strong motion and broadband teleseismic analysis of the 1991 Sierra Madre, California, earthquake. Journal of Geophysical Research, 1992, 97, 11033-11046.	3.3	37
115	Reply to Arthur Frankel's "Comment on â€~Rupture process of the 1987 Superstition Hills earthquake from the inversion of strong-motion data'â€: Bulletin of the Seismological Society of America, 1992, 82, 1519-1533.	1.1	4
116	Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong-motion and broadband teleseismic data. Bulletin of the Seismological Society of America, 1991, 81, 1540-1572.	1.1	278
117	Rupture process of the 1987 Superstition Hills earthquake from the inversion of strong-motion data. Bulletin of the Seismological Society of America, 1990, 80, 1079-1098.	1.1	78
118	A seismically active section of the Southwest Indian Ridge. Geophysical Research Letters, 1986, 13, 1003-1006.	1.5	14
119	Macroseismic Intensity in the Internet Age. Computational Seismology and Geodynamics, 0, , 60-65.	0.0	2
120	Evaluation of Intensity Prediction Equations (IPEs) for Small-Magnitude Earthquakes. Bulletin of the Seismological Society of America, 0, , .	1.1	1