List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/309167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical Analysis of Interactions between Potassium Ions and Organic Electrolyte Solvents: A Comparison with Lithium, Sodium, and Magnesium Ions. Journal of the Electrochemical Society, 2017, 164, A54-A60.	1.3	276
2	Unveiling a New Aspect of Simple Arylboronic Esters: Long-Lived Room-Temperature Phosphorescence from Heavy-Atom-Free Molecules. Journal of the American Chemical Society, 2017, 139, 2728-2733.	6.6	269
3	Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents. Journal of the Electrochemical Society, 2013, 160, A2160-A2165.	1.3	227
4	An extension of ab initio molecular orbital theory to nuclear motion. Chemical Physics Letters, 1998, 290, 437-442.	1.2	209
5	Density functional method including weak interactions: Dispersion coefficients based on the local response approximation. Journal of Chemical Physics, 2009, 131, 224104.	1.2	204
6	Alternative linear-scaling methodology for the second-order MÃ,ller-Plesset perturbation calculation based on the divide-and-conquer method. Journal of Chemical Physics, 2007, 127, 074103.	1.2	141
7	Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations. Journal of Chemical Physics, 2008, 129, 044103.	1.2	135
8	Implementation of divide-and-conquer method including Hartree-Fock exchange interaction. Journal of Computational Chemistry, 2007, 28, 2003-2012.	1.5	130
9	Energy density analysis with Kohn–Sham orbitals. Chemical Physics Letters, 2002, 363, 73-79.	1.2	126
10	Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations. Journal of Chemical Physics, 2009, 131, 114108.	1.2	126
11	Simultaneous determination of nuclear and electronic wave functions without Born-Oppenheimer approximation: Ab initio NO+MO/HF theory. International Journal of Quantum Chemistry, 2002, 86, 511-517.	1.0	116
12	Confined water-mediated high proton conduction in hydrophobic channel of a synthetic nanotube. Nature Communications, 2020, 11, 843.	5.8	116
13	Many-body effects in nonadiabatic molecular theory for simultaneous determination of nuclear and electronic wave functions:Ab initioNOMO/MBPT and CC methods. Journal of Chemical Physics, 2003, 118, 1119-1127.	1.2	96
14	Local response dispersion method. II. Generalized multicenter interactions. Journal of Chemical Physics, 2010, 133, 194101.	1.2	89
15	Nuclear orbital plus molecular orbital theory: Simultaneous determination of nuclear and electronic wave functions without Born–Oppenheimer approximation. International Journal of Quantum Chemistry, 2007, 107, 2849-2869.	1.0	88
16	Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divideâ€andâ€conquer, densityâ€functional tightâ€binding, and massively parallel computation. Journal of Computational Chemistry, 2016, 37, 1983-1992.	1.5	88
17	Sodium―and Potassiumâ€Hydrate Melts Containing Asymmetric Imide Anions for Highâ€Voltage Aqueous Batteries. Angewandte Chemie - International Edition, 2019, 58, 14202-14207	7.2	81
18	Ab initio molecular orbital model of scanning tunneling microscopy. Journal of Chemical Physics, 1996, 104, 2410-2417.	1.2	80

#	Article	IF	CITATIONS
19	Local unitary transformation method for large-scale two-component relativistic calculations: Case for a one-electron Dirac Hamiltonian. Journal of Chemical Physics, 2012, 136, 244102.	1.2	76
20	Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component?. Angewandte Chemie - International Edition, 2019, 58, 8024-8028.	7.2	76
21	Dipped adcluster model study for molecular and dissociative chemisorptions of O2 on Ag surface. Journal of Chemical Physics, 1993, 98, 2423-2436.	1.2	75
22	Time-dependent density functional theory calculations for core-excited states: Assessment of standard exchange-correlation functionals and development of a novel hybrid functional. Journal of Chemical Physics, 2006, 124, 094105.	1.2	73
23	Second-order MÃ,ller-Plesset perturbation energy obtained from divide-and-conquer Hartree-Fock density matrix. Journal of Chemical Physics, 2006, 125, 204106.	1.2	72
24	Molecular orbital study on the reaction process of dimethylamine borane as a reductant for electroless deposition. Journal of Electroanalytical Chemistry, 2003, 559, 131-136.	1.9	70
25	How does it become possible to treat delocalized and/or open-shell systems in fragmentation-based linear-scaling electronic structure calculations? The case of the divide-and-conquer method. Physical Chemistry Chemical Physics, 2012, 14, 7629.	1.3	68
26	Theoretical Analysis of Carrier Ion Diffusion in Superconcentrated Electrolyte Solutions for Sodium-Ion Batteries. Journal of Physical Chemistry B, 2018, 122, 2600-2609.	1.2	67
27	Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density. Journal of Chemical Physics, 2018, 148, 241705.	1.2	67
28	Hybrid exchange-correlation functional for core, valence, and Rydberg excitations: Core-valence-Rydberg B3LYP. Journal of Chemical Physics, 2006, 125, 064109.	1.2	65
29	Non-Born–Oppenheimer theory for simultaneous determination of vibrational and electronic excited states: ab initio NO+MO/CIS theory. Chemical Physics Letters, 2001, 345, 118-124.	1.2	64
30	Activation of O2 on Cu, Ag, and Au surfaces for the epoxidation of ethylene: dipped adcluster model study. Surface Science, 1997, 387, 328-341.	0.8	63
31	Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory. Journal of Chemical Physics, 2005, 122, 164101.	1.2	63
32	Molecular orbital study on the reaction mechanisms of electroless deposition processes. Electrochimica Acta, 2001, 47, 47-53.	2.6	62
33	Dualâ€level hierarchical scheme for linearâ€scaling divideâ€andâ€conquer correlation theory. International Journal of Quantum Chemistry, 2009, 109, 2227-2237.	1.0	61
34	Theoretical study on the ground and excited states of MnOâ^'4. Journal of Chemical Physics, 1991, 95, 8287-8291.	1.2	58
35	D <scp>cdftbmd</scp> : Divideâ€andâ€Conquer Density Functional Tightâ€Binding Program for Hugeâ€System Quantum Mechanical Molecular Dynamics Simulations. Journal of Computational Chemistry, 2019, 40, 1538-1549.	1.5	58
36	Assessment of self-consistent field convergence in spin-dependent relativistic calculations. Chemical Physics Letters, 2016, 657, 65-71.	1.2	55

#	Article	IF	CITATIONS
37	Generalized MÃ,llerâ^'Plesset Partitioning in Multiconfiguration Perturbation Theory. Journal of Chemical Theory and Computation, 2010, 6, 2024-2033.	2.3	53
38	Divide-and-Conquer-Type Density-Functional Tight-Binding Molecular Dynamics Simulations of Proton Diffusion in a Bulk Water System. Journal of Physical Chemistry B, 2016, 120, 217-221.	1.2	53
39	Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: A density functional theory analysis. Journal of Catalysis, 2018, 357, 213-222.	3.1	53
40	Near-infrared absorption of π-stacking columns composed of trioxotriangulene neutral radicals. Npj Quantum Materials, 2017, 2, .	1.8	52
41	Local unitary transformation method for large-scale two-component relativistic calculations. II. Extension to two-electron Coulomb interaction. Journal of Chemical Physics, 2012, 137, 144101.	1.2	51
42	Theoretical study on molecular and dissociative chemisorptions of an O2 molecule on an Ag surface: dipped adcluster model combined with symmetry-adapted cluster-configuration interaction method. Chemical Physics Letters, 1990, 174, 283-286.	1.2	49
43	π*–σ* hyperconjugation mechanism on the rotational barrier of the methyl group (I): Substituted toluenes in the ground, excited, and anionic states. Journal of Chemical Physics, 2000, 113, 2168-2174.	1.2	48
44	Extension of the Core-Valence-Rydberg B3LYP Functional to Core-Excited-State Calculations of Third-Row Atoms. Journal of Chemical Theory and Computation, 2007, 3, 1295-1305.	2.3	46
45	Reconsidering an analytical gradient expression within a divide-and-conquer self-consistent field approach: Exact formula and its approximate treatment. Journal of Chemical Physics, 2011, 134, 034105.	1.2	45
46	Dipped adcluster model for chemisorptions and catalytic reactions on a metal surface: Image force correction and applications to Pd–O2 adclusters. Journal of Chemical Physics, 1991, 95, 640-647.	1.2	43
47	Oxidation mechanism of propylene on an Ag surface: dipped adcluster model study. Surface Science, 1998, 401, 371-391.	0.8	43
48	Description of core excitations by time-dependent density functional theory with local density approximation, generalized gradient approximation, meta-generalized gradient approximation, and hybrid functionals. Journal of Computational Chemistry, 2007, 28, 2067-2074.	1.5	43
49	Analysis of self-interaction correction for describing core excited states. International Journal of Quantum Chemistry, 2007, 107, 23-29.	1.0	43
50	Divide-and-conquer self-consistent field calculation for open-shell systems: Implementation and application. Chemical Physics Letters, 2010, 500, 172-177.	1.2	43
51	Ab Initio Molecular Orbital Study on the Oxidation Mechanism for Dimethylamine Borane as a Reductant for an Electroless Deposition Process. Journal of Physical Chemistry B, 1999, 103, 1774-1778.	1.2	42
52	Is the divide-and-conquer Hartree–Fock method valid for calculations of delocalized systems?. Molecular Physics, 2007, 105, 2799-2804.	0.8	42
53	Ab Initio Molecular Orbital Study of the Oxidation Mechanism of Hypophosphite Ion as a Reductant for an Electroless Deposition Process. Journal of Physical Chemistry B, 2001, 105, 1701-1704.	1.2	41
54	Reactions of protonated water clusters H+(H2O)n (n=1–6) with dimethylsulfoxide in a guided ion beam apparatus. Chemical Physics Letters, 2003, 377, 69-73.	1.2	41

#	Article	IF	CITATIONS
55	Rigorous non-Born-Oppenheimer theory: Combination of explicitly correlated Gaussian method and nuclear orbital plus molecular orbital theory. Journal of Chemical Physics, 2011, 135, 024111.	1.2	41
56	Theoretical study on the photostimulated desorption of CO from a Pt surface. Journal of Chemical Physics, 1996, 104, 714-726.	1.2	38
57	Nature of the change in the rotational barrier of the methyl group due to S0→S1 excitation. Chemical Physics Letters, 1999, 307, 272-276.	1.2	38
58	Divide-and-Conquer-Type Density-Functional Tight-Binding Simulations of Hydroxide Ion Diffusion in Bulk Water. Journal of Physical Chemistry B, 2017, 121, 1362-1371.	1.2	38
59	Rigorous p <i>K</i> _a Estimation of Amine Species Using Density-Functional Tight-Binding-Based Metadynamics Simulations. Journal of Chemical Theory and Computation, 2018, 14, 351-356.	2.3	38
60	Implementation of Surján's density matrix formulae for calculating second-order MÃ,ller–Plesset energy. Chemical Physics Letters, 2006, 420, 250-255.	1.2	37
61	Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory: Application of MÃ,ller-Plesset perturbation theory. Journal of Chemical Physics, 2006, 124, 194110.	1.2	37
62	Potential energy curves of dioxygen anion species, Oâ^'2 and O2â^'2. Chemical Physics Letters, 1992, 197, 339-345.	1.2	36
63	EXTENSION OF ENERGY DENSITY ANALYSIS TO TREATING CHEMICAL BONDS IN MOLECULES. Journal of Theoretical and Computational Chemistry, 2005, 04, 317-331.	1.8	36
64	Colleâ€salvettiâ€ŧype correction for electron–nucleus correlation in the nuclear orbital plus molecular orbital theory. Journal of Computational Chemistry, 2008, 29, 735-740.	1.5	36
65	Novel Approach to Excited-State Calculations of Large Molecules Based on Divide-and-Conquer Method: Application to Photoactive Yellow Protein. Journal of Physical Chemistry B, 2013, 117, 5565-5573.	1.2	36
66	Revisiting the extrapolation of correlation energies to complete basis set limit. Journal of Computational Chemistry, 2015, 36, 1075-1082.	1.5	36
67	Time-dependent Hartree–Fock frequency-dependent polarizability calculation applied to divide-and-conquer electronic structure method. Chemical Physics Letters, 2010, 485, 247-252.	1.2	35
68	Quantum chemistry beyond Born–Oppenheimer approximation on a quantum computer: A simulated phase estimation study. International Journal of Quantum Chemistry, 2016, 116, 1328-1336.	1.0	35
69	Dipped adcluster model study for the end-on chemisorption of O2 on an Ag surface. Canadian Journal of Chemistry, 1992, 70, 404-408.	0.6	34
70	Mechanism of the partial oxidation of ethylene on an Ag surface: dipped adcluster model study. Surface Science, 1997, 384, 315-333.	0.8	34
71	Grid-based energy density analysis: Implementation and assessment. Journal of Chemical Physics, 2007, 126, 034103.	1.2	34
72	Short-time Fourier transform analysis of real-time time-dependent Hartree–Fock and time-dependent density functional theory calculations with Gaussian basis functions. Journal of Chemical Physics, 2010, 132, 054104.	1.2	34

#	Article	IF	CITATIONS
73	Linearity condition for orbital energies in density functional theory: Construction of orbital-specific hybrid functional. Journal of Chemical Physics, 2011, 134, 124113.	1.2	34
74	Contrasting mechanisms for CO2 absorption and regeneration processes in aqueous amine solutions: Insights from density-functional tight-binding molecular dynamics simulations. Chemical Physics Letters, 2016, 647, 127-131.	1.2	34
75	Orbital-free density functional theory calculation applying semi-local machine-learned kinetic energy density functional and kinetic potential. Chemical Physics Letters, 2020, 748, 137358.	1.2	34
76	Density Functional Theory Analysis of Reaction Mechanism of Hypophosphite Ions on Metal Surfaces. Journal of the Electrochemical Society, 2011, 158, D585.	1.3	33
77	DFT Calculation Analysis of the Infrared Spectra of Ethylene Adsorbed on Cu(110), Pd(110), and Ag(110). Journal of Physical Chemistry B, 2002, 106, 10714-10721.	1.2	32
78	Synthesis of the Pivalamidate-Bridged Pentanuclear Platinum(II,III) Linear Complexes with Pt···Pt Interactions. Inorganic Chemistry, 2005, 44, 8552-8560.	1.9	32
79	Time-dependent density functional theory (TDDFT) calculations for core-excited states: Assessment of an exchange functional combining the Becke88 and van Leeuwen–Baerends-type functionals. Chemical Physics Letters, 2006, 419, 297-303.	1.2	32
80	Divide-and-Conquer Density-Functional Tight-Binding Molecular Dynamics Study on the Formation of Carbamate Ions during CO2 Chemical Absorption in Aqueous Amine Solution. Bulletin of the Chemical Society of Japan, 2017, 90, 1230-1235.	2.0	32
81	Semi-local machine-learned kinetic energy density functional demonstrating smooth potential energy curves. Chemical Physics Letters, 2019, 734, 136732.	1.2	32
82	A hybrid approach combining energy density analysis with the interaction energy decomposition method. Journal of Computational Chemistry, 2004, 25, 1882-1887.	1.5	31
83	Extension of energy density analysis to periodic boundary condition calculation: Evaluation of locality in extended systems. Chemical Physics Letters, 2007, 438, 132-138.	1.2	31
84	Electronic temperature in divideâ€andâ€conquer electronic structure calculation revisited: Assessment and improvement of selfâ€consistent field convergence. International Journal of Quantum Chemistry, 2009, 109, 2706-2713.	1.0	31
85	Theoretical study on the ground and excited states of the chromate anion CrO2â^4. Journal of Chemical Physics, 1994, 101, 1029-1036.	1.2	29
86	CO and NO adsorption on copper-containing zeolite. A theoretical ab initio study. Catalysis Letters, 1996, 42, 173-176.	1.4	29
87	Energy density analysis of cluster size dependence of surface-molecule interactions: H2, C2H2, C2H4, and CO adsorption onto Si(100)-(2×1) surface. Journal of Chemical Physics, 2004, 121, 4893-4900.	1.2	29
88	Cristaxenicin A, an Antiprotozoal Xenicane Diterpenoid from the Deep Sea Gorgonian <i>Acanthoprimnoa cristata</i> . Journal of Organic Chemistry, 2012, 77, 10962-10966.	1.7	29
89	Local unitary transformation method toward practical electron correlation calculations with scalar relativistic effect in large-scale molecules. Journal of Chemical Physics, 2013, 139, 034109.	1.2	29
90	Parallel implementation of efficient charge–charge interaction evaluation scheme in periodic divideâ€andâ€conquer densityâ€functional tightâ€binding calculations. Journal of Computational Chemistry, 2018, 39, 105-116.	1.5	29

#	Article	IF	CITATIONS
91	The important role of N2H formation energy for low-temperature ammonia synthesis in an electric field. Catalysis Today, 2020, 351, 119-124.	2.2	29
92	Electronic mechanism of the surface enhanced Raman scattering. Journal of Chemical Physics, 1995, 103, 2286-2294.	1.2	28
93	Linearity condition for orbital energies in density functional theory (II): Application to global hybrid functionals. Chemical Physics Letters, 2011, 513, 130-135.	1.2	28
94	Simulations of the synthesis of boron-nitride nanostructures in a hot, high pressure gas volume. Chemical Science, 2018, 9, 3803-3819.	3.7	28
95	Energy density analysis (EDA) of cis, trans-enol isomerization in malonaldehyde, tropolone and 9-hydroxyphenalenone. Chemical Physics Letters, 2002, 365, 203-210.	1.2	27
96	Density Functional Theory Analysis for Orbital Interaction between Hypophosphite Ions and Metal Surfaces. Journal of the Electrochemical Society, 2011, 158, D626.	1.3	27
97	Divide-and-Conquer Approaches to Quantum Chemistry: Theory and Implementation. Challenges and Advances in Computational Chemistry and Physics, 2011, , 97-127.	0.6	27
98	Hybrid approach for ab initio molecular dynamics simulation combining energy density analysis and short-time Fourier transform: Energy transfer spectrogram. Journal of Chemical Physics, 2005, 123, 034101.	1.2	26
99	Interpretation of Intermolecular Geometric Isotope Effect in Hydrogen Bonds: Nuclear Orbital plus Molecular Orbital Study. Journal of Physical Chemistry A, 2011, 115, 1433-1439.	1.1	26
100	Linear-scaling divide-and-conquer second-order MÃ,ller–Plesset perturbation calculation for open-shell systems: implementation and application. Theoretical Chemistry Accounts, 2011, 130, 411-417.	0.5	26
101	Electron-Hopping Brings Lattice Strain and High Catalytic Activity in the Low-Temperature Oxidative Coupling of Methane in an Electric Field. Journal of Physical Chemistry C, 2018, 122, 2089-2096.	1.5	26
102	π*–σ* Hyperconjugation mechanism on the rotational barrier of the methyl group (II): 1- and 2-methylnaphthalenes in the S0, S1, C0, and A1 states. Chemical Physics Letters, 2000, 318, 298-304.	1.2	25
103	Non-Born–Oppenheimer effects predicted by translation-free nuclear orbital plus molecular orbital method. Chemical Physics Letters, 2006, 421, 72-76.	1.2	25
104	Development of an excited-state calculation method for large systems using dynamical polarizability: A divide-and-conquer approach at the time-dependent density functional level. Journal of Chemical Physics, 2017, 146, 124123.	1.2	25
105	Theoretical studies on the catalytic activity of Ag surface for the oxidation of olefins. International Journal of Quantum Chemistry, 1997, 65, 839-855.	1.0	24
106	Elimination of Translational and Rotational Motions in Nuclear Orbital Plus Molecular Orbital Theory:  Contribution of the First-Order Rovibration Coupling. Journal of Chemical Theory and Computation, 2006, 2, 1544-1550.	2.3	24
107	UVâ ^{-^} Visible and1H or13C NMR Spectroscopic Studies on the Specific Interaction between Lithium Ions and the Anion from Tropolone or 4-Isopropyltropolone (Hinokitiol) and on the Formation of Protonated Tropolones in Acetonitrile or Other Solvents. Journal of Physical Chemistry B, 2007, 111, 1759-1768	1.2	24
108	Quantum chemical approach for condensed-phase thermochemistry (III): Accurate evaluation of proton hydration energy and standard hydrogen electrode potential. Chemical Physics Letters, 2016, 650, 159-164.	1.2	24

#	Article	IF	CITATIONS
109	Theoretical investigation on structural effects of Pt–Mn catalyst on activity and selectivity for methylcyclohexane dehydrogenation. Chemical Physics Letters, 2018, 711, 73-76.	1.2	24
110	Machine-learned electron correlation model based on correlation energy density at complete basis set limit. Journal of Chemical Physics, 2019, 151, 024104.	1.2	24
111	GPUâ€Accelerated Largeâ€Scale Excitedâ€State Simulation Based on Divideâ€andâ€Conquer Timeâ€Dependent Densityâ€Functional Tightâ€Binding. Journal of Computational Chemistry, 2019, 40, 2778-2786.	1.5	24
112	Natural atomic orbital based energy density analysis: Implementation and applications. Chemical Physics Letters, 2006, 424, 193-198.	1.2	23
113	Linearâ€scaling selfâ€consistent field calculations based on divideâ€andâ€conquer method using resolutionâ€ofâ€identity approximation on graphical processing units. Journal of Computational Chemistry, 2015, 36, 164-170.	1.5	23
114	Quantum mechanical molecular dynamics simulations of polaron formation in methylammonium lead iodide perovskite. Physical Chemistry Chemical Physics, 2020, 22, 97-106.	1.3	23
115	Energy density analysis of internal methyl rotations in halogenated toluenes. Chemical Physics Letters, 2003, 368, 673-679.	1.2	22
116	Energy density analysis (EDA) of proton transfer reactions in malonaldehyde, tropolone, and 9-hydroxyphenalenone. Computational and Theoretical Chemistry, 2003, 637, 27-35.	1.5	22
117	Extension of Density Functional Theory to Nuclear Orbital plus Molecular Orbital Theory: Self-Consistent Field Calculations with the Colle–Salvetti Electron–Nucleus Correlation Functional. Bulletin of the Chemical Society of Japan, 2009, 82, 1133-1139.	2.0	22
118	Accelerating convergence in the antisymmetric product of strongly orthogonal geminals method. International Journal of Quantum Chemistry, 2013, 113, 239-244.	1.0	22
119	An effective energy gradient expression for divide-and-conquer second-order MÃ,ller–Plesset perturbation theory. Journal of Chemical Physics, 2013, 138, 044102.	1.2	22
120	Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method. Journal of Chemical Theory and Computation, 2020, 16, 2369-2378.	2.3	22
121	Periodic-Boundary-Condition Calculation using Heyd-Scuseria-Ernzerhof Screened Coulomb Hybrid Functional: Electronic Structure of Anatase and Rutile TiO2. Journal of Computer Chemistry Japan, 2006, 5, 7-18.	0.0	22
122	Density functional theory study on the oxidation mechanisms of aldehydes as reductants for electroless Cu deposition process. Electrochimica Acta, 2005, 51, 906-915.	2.6	21
123	Application of the Sakuraiâ€Sugiura projection method to coreâ€excitedâ€state calculation by timeâ€dependent density functional theory. Journal of Computational Chemistry, 2008, 29, 2311-2316.	1.5	21
124	Twoâ€level hierarchical parallelization of secondâ€order MÃ,ller–plesset perturbation calculations in divideâ€andâ€conquer method. Journal of Computational Chemistry, 2011, 32, 2756-2764.	1.5	21
125	Extension of local response dispersion method to excited-state calculation based on time-dependent density functional theory. Journal of Chemical Physics, 2012, 137, 124106.	1.2	21
126	Divideâ€andâ€conquerâ€based symmetry adapted cluster method: Synergistic effect of subsystem fragmentation and configuration selection. International Journal of Quantum Chemistry, 2013, 113, 218-223.	1.0	21

#	Article	IF	CITATIONS
127	Analytical energy gradient based on spin-free infinite-order Douglas-Kroll-Hess method with local unitary transformation. Journal of Chemical Physics, 2013, 139, 244107.	1.2	21
128	Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals. Journal of Chemical Physics, 2015, 142, 024318.	1.2	21
129	Density Functional Theory Analysis of Elementary Reactions in NO _{<i>x</i>} Reduction on Rh Surfaces and Rh Clusters. Journal of Physical Chemistry C, 2017, 121, 15272-15281.	1.5	21
130	Agglomeration Suppression of a Fe-Supported Catalyst and its Utilization for Low-Temperature Ammonia Synthesis in an Electric Field. ACS Omega, 2020, 5, 6846-6851.	1.6	21
131	Quantum chemical approach for condensed-phase thermochemistry: Proposal of a harmonic solvation model. Journal of Chemical Physics, 2014, 141, 174106.	1.2	20
132	Theoretical Study on the Photochemical Decomposition Reaction of Permanganate Ion, MnO4 The Journal of Physical Chemistry, 1995, 99, 8550-8555.	2.9	19
133	Molecular Orbital Study on the Oxidation Mechanism of Hydrazine and Hydroxylamine as Reducing Agents for Electroless Deposition Process. Electrochemistry, 2007, 75, 45-49.	0.6	19
134	Application of Real-time Time-dependent Density Functional Theory with the CVB3LYP Functional to Core Excitations. Chemistry Letters, 2010, 39, 407-409.	0.7	19
135	Theoretical Study of Extremely Long yet Stable Carbon–Carbon Bonds: Effect of Attractive C···H Interactions and Small Radical Stabilization of Diamondoids. Bulletin of the Chemical Society of Japan, 2015, 88, 1636-1641.	2.0	19
136	Electronic Structures of MoF6 and MoOF4 in the Ground and Excited States: A SAC-CI and Frozen-Orbital-Analysis Study. Journal of Physical Chemistry A, 1998, 102, 2033-2043.	1.1	18
137	Molecular orbital propagation to accelerate self-consistent-field convergence in an ab initio molecular dynamics simulation. Journal of Chemical Physics, 2008, 128, 094101.	1.2	18
138	Development of the explicitly correlated Gaussian–nuclear orbital plus molecular orbital theory: Incorporation of electron–electron correlation. Chemical Physics Letters, 2012, 533, 100-105.	1.2	18
139	RAQET: Largeâ€scale twoâ€component relativistic quantum chemistry program package. Journal of Computational Chemistry, 2018, 39, 2333-2344.	1.5	18
140	Sodium―and Potassiumâ€Hydrate Melts Containing Asymmetric Imide Anions for Highâ€Voltage Aqueous Batteries. Angewandte Chemie, 2019, 131, 14340-14345.	1.6	18
141	An Air―and Water‣table B ₄ N ₄ â€Heteropentalene Serving as a Host Material for a Phosphorescent OLED. Angewandte Chemie - International Edition, 2021, 60, 23812-23818.	7.2	18
142	Theoretical study on ammonia cluster ions: nature of thermodynamic magic number. Chemical Physics, 2000, 262, 201-210.	0.9	17
143	Size-Dependent Reaction Cross Section of Protonated Water Clusters H+(H2O)n(n= 2â^11) with D2O. Journal of Physical Chemistry A, 2003, 107, 10904-10910.	1.1	17
144	Isotope effect in dihydrogen-bonded systems: application of the analytical energy gradient method in the nuclear orbital plus molecular orbital theory. Molecular Physics, 2007, 105, 2649-2657	0.8	17

#	Article	IF	CITATIONS
145	Dynamic hyperpolarizability calculations of large systems: The linear-scaling divide-and-conquer approach. Journal of Chemical Physics, 2012, 136, 084108.	1.2	17
146	Self onsistent field treatment and analytical energy gradient of local response dispersion method. International Journal of Quantum Chemistry, 2013, 113, 257-262.	1.0	17
147	Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice I _h , Ice I _c , Ice III, and Melted Ice VI Phases. Journal of Physical Chemistry A, 2018, 122, 33-40.	1.1	17
148	Development of Large-Scale Excited-State Calculations Based on the Divide-and-Conquer Time-Dependent Density Functional Tight-Binding Method. Journal of Chemical Theory and Computation, 2019, 15, 1719-1727.	2.3	17
149	Quantum Chemical Reaction Prediction Method Based on Machine Learning. Bulletin of the Chemical Society of Japan, 2020, 93, 685-693.	2.0	17
150	Energy density analysis of embedded cluster models for an MgO crystal. Chemical Physics Letters, 2005, 410, 64-69.	1.2	16
151	Energy density analysis of cluster size dependence of surface-molecule interactions (II): Formate adsorption onto a Cu(111) surface. Journal of Computational Chemistry, 2006, 27, 917-925.	1.5	16
152	Improving quasiparticle second order electron propagator calculations with the spin-component-scaled technique. Chemical Physics Letters, 2014, 591, 82-87.	1.2	16
153	Hydroxide Ion Carrier for Proton Pumps in Bacteriorhodopsin: Primary Proton Transfer. Journal of Physical Chemistry B, 2020, 124, 8524-8539.	1.2	16
154	Simulating the Coupled Structural–Electronic Dynamics of Photoexcited Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 4448-4455.	2.1	16
155	Implementation of Divide-and-Conquer (DC) Electronic Structure Code to GAMESS Program Package. Journal of Computer Chemistry Japan, 2009, 8, 1-12.	0.0	16
156	Dipped adcluster model and SAC-CI method applied to harpooning, chemiluminescence and electron emission in halogen chemisorption on alkali metal surface. Journal of Molecular Catalysis, 1993, 82, 211-228.	1.2	15
157	Short-time Fourier transform analysis of ab initio molecular dynamics simulation: Collision reaction between NH[sub 4][sup +](NH[sub 3])[sub 2] and NH[sub 3]. Journal of Chemical Physics, 2004, 121, 11098.	1.2	15
158	Hybrid treatment combining the translation- and rotation-free nuclear orbital plus molecular orbital theory with generator coordinate method: TRF-NOMO/GCM. Chemical Physics Letters, 2007, 433, 409-415.	1.2	15
159	Acceleration of self-consistent-field convergence in ab initio molecular dynamics and Monte Carlo simulations and geometry optimization. Chemical Physics Letters, 2010, 490, 102-108.	1.2	15
160	Direct alkoxysilylation of alkoxysilanes for the synthesis of explicit alkoxysiloxane oligomers. Journal of Organometallic Chemistry, 2012, 716, 26-31.	0.8	15
161	Frozen core potential scheme with a relativistic electronic Hamiltonian: Theoretical connection between the model potential and all-electron treatments. Chemical Physics Letters, 2014, 592, 341-348.	1.2	15
162	Relativistic density functional theory with picture-change corrected electron density based on infinite-order Douglas-Kroll-Hess method. Chemical Physics Letters, 2017, 680, 37-43.	1.2	15

#	Article	IF	CITATIONS
163	Development of Divideâ€andâ€Conquer Densityâ€Functional Tightâ€Binding Method for Theoretical Research on Liâ€Ion Battery. Chemical Record, 2019, 19, 746-757.	2.9	15
164	An Elementâ€Substituted Cyclobutadiene Exhibiting Highâ€Energy Blue Phosphorescence. Angewandte Chemie - International Edition, 2021, 60, 21817-21823.	7.2	15
165	Frozen-Orbital Analysis of the Excited States of Metal Complexes in High Symmetry:  Oh Case. The Journal of Physical Chemistry, 1996, 100, 15753-15759.	2.9	14
166	Ï€*–Ïf* hyperconjugation mechanism on the rotational barrier of the methyl group (III): Methyl-azabenzenes in the ground, excited, and anionic states. Journal of Chemical Physics, 2001, 114, 8357-8363.	1.2	14
167	A unified approach to the analysis of the chemical bond in hydrides and hydrocarbons. Acta Materialia, 2007, 55, 6673-6680.	3.8	14
168	Energy density analysis for secondâ€order MÃ,llerâ€Plesset perturbation theory and coupledâ€cluster theory with singles and doubles: Application to C ₂ H ₄ CH ₄ complexes. Journal of Computational Chemistry, 2008, 29, 1555-1563.	1.5	14
169	Discovery of hexacoordinate hypervalent carbon compounds: Density functional study. Chemical Physics Letters, 2008, 460, 37-41.	1.2	14
170	UV–visible, 1H and 13C NMR spectroscopic studies on the interaction between protons or alkaline earth metal ions and the benzoate ion in acetonitrile. Journal of Molecular Liquids, 2009, 145, 152-157.	2.3	14
171	Finite-field evaluation of static (hyper)polarizabilities based on the linear-scaling divide-and-conquer method. Theoretical Chemistry Accounts, 2011, 130, 701-709.	0.5	14
172	Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component?. Angewandte Chemie, 2019, 131, 8108-8112.	1.6	14
173	Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations. Journal of Chemical Physics, 2020, 152, 224109.	1.2	14
174	New recurrence relations for the rapid evaluation of electron repulsion integrals based on the accompanying coordinate expansion formula. Journal of Chemical Physics, 2004, 121, 4050-4058.	1.2	13
175	Energy density analysis of the chemical bond between atoms in perovskite-type hydrides. Journal of Alloys and Compounds, 2007, 446-447, 96-100.	2.8	13
176	Natural bond orbitalâ€based energy density analysis for correlated methods: Secondâ€order MÃļler–Plesset perturbation and coupledâ€cluster singles and doubles. International Journal of Quantum Chemistry, 2008, 108, 1316-1325.	1.0	13
177	Oneâ€body energy decomposition schemes revisited: Assessment of Mullikenâ€, Gridâ€, and conventional energy density analyses. International Journal of Quantum Chemistry, 2009, 109, 2464-2473.	1.0	13
178	Density Functional Study on Core Ionization Spectra of Cytidine and Its Fragments. Bulletin of the Chemical Society of Japan, 2009, 82, 187-195.	2.0	13
179	Energy expression of the chemical bond between atoms in metal oxides. Journal of Physics and Chemistry of Solids, 2011, 72, 853-861.	1.9	13
180	Generalized Mà ller–Plesset Multiconfiguration Perturbation Theory Applied to an Open-Shell Antisymmetric Product of Strongly Orthogonal Geminals Reference Wave Function. Journal of Chemical Theory and Computation, 2012, 8, 4330-4335.	2.3	13

#	Article	IF	CITATIONS
181	Evaluation of electron repulsion integral of the explicitly correlated Gaussian-nuclear orbital plus molecular orbital theory. Chemical Physics Letters, 2012, 521, 142-149.	1.2	13
182	Governing factors of supports of ammonia synthesis in an electric field found using density functional theory. Journal of Chemical Physics, 2019, 151, 064708.	1.2	13
183	Efficient Semi-Numerical Implementation of Relativistic Exact Exchange within the Infinite-Order Two-Component Method Using a Modified Chain-of-Spheres Method. Journal of Chemical Theory and Computation, 2019, 15, 4745-4763.	2.3	13
184	Finite-temperature-based linear-scaling divide-and-conquer self-consistent field method for static electron correlation systems. Chemical Physics Letters, 2019, 725, 18-23.	1.2	13
185	Heteroatom doping effects on interaction of H2O and CeO2 (111) surfaces studied using density functional theory: Key roles of ionic radius and dispersion. Journal of Chemical Physics, 2020, 152, 014707.	1.2	13
186	Ab initio molecular dynamics study on the excitation dynamics of psoralen compounds. Journal of Chemical Physics, 2003, 119, 4223-4228.	1.2	12
187	Theoretical study on the excited states of psoralen compounds bonded to a thymine residue. Journal of Computational Chemistry, 2004, 25, 179-188.	1.5	12
188	Theoretical analysis of the influence of surface defects on the reactivity of hypophosphite ions. Electrochimica Acta, 2013, 113, 785-791.	2.6	12
189	Acceleration effect of thiourea on the oxidation reaction of hypophosphite ion on Ni surface. Electrochimica Acta, 2013, 100, 311-316.	2.6	12
190	Local response dispersion method: A densityâ€dependent dispersion correction for density functional theory. International Journal of Quantum Chemistry, 2015, 115, 309-324.	1.0	12
191	Unveiling Controlling Factors of the S ₀ /S ₁ Minimum Energy Conical Intersection: A Theoretical Study. Journal of Physical Chemistry A, 2018, 122, 8905-8910.	1.1	12
192	First-principle study of the oxidation mechanism of formaldehyde and hypophosphite for copper and nickel electroless deposition process. Electrochimica Acta, 2019, 307, 536-542.	2.6	12
193	Spinâ€flip approach within timeâ€dependent density functional tightâ€binding method: Theory and applications. Journal of Computational Chemistry, 2020, 41, 1538-1548.	1.5	12
194	Catalytic Dehydrogenation of Ethane over Doped Perovskite via the Mars–van Krevelen Mechanism. Journal of Physical Chemistry C, 2020, 124, 10462-10469.	1.5	12
195	Direct Near Infrared Light–Activatable Phthalocyanine Catalysts. Chemistry - A European Journal, 2022, 28, .	1.7	12
196	New algorithm for the rapid evaluation of electron repulsion integrals: elementary basis algorithm. Chemical Physics Letters, 2004, 388, 50-54.	1.2	11
197	Principal Component Analysis with Energy Density ofCalophyllumCoumarins. Chemistry Letters, 2005, 34, 844-845.	0.7	11
198	Short-time Fourier transform analysis ofab initio molecular dynamics simulation: Collision reaction between CN and C4H6. Journal of Computational Chemistry, 2005, 26, 436-442.	1.5	11

#	Article	IF	CITATIONS
199	Wavelet transform analysis ofab initio molecular dynamics simulation: Application to core-excitation dynamics of BF3. Journal of Computational Chemistry, 2007, 28, 1137-1144.	1.5	11
200	Extension of Frozen-orbital Analysis to the Tamm–Dancoff Approximation to Time-dependent Density Functional Theory. Chemistry Letters, 2009, 38, 528-529.	0.7	11
201	Theoretical Analysis of Catalytic Activity of Metal Surfaces on Reaction of Hypophosphite Ion. Electrochemistry, 2012, 80, 126-131.	0.6	11
202	Quantum chemical approach for condensed-phase thermochemistry (II): Applications to formation and combustion reactions of liquid organic molecules. Chemical Physics Letters, 2015, 624, 6-11.	1.2	11
203	The divide-and-conquer second-order proton propagator method based on nuclear orbital plus molecular orbital theory for the efficient computation of proton binding energies. Physical Chemistry Chemical Physics, 2016, 18, 27422-27431.	1.3	11
204	Initial Framework for Software Quality Evaluation Based on ISO/IEC 25022 and ISO/IEC 25023. , 2016, , .		11
205	Systematic Investigation of the Thermodynamic Properties of Amine Solvents for CO2 Chemical Absorption Using the Cluster-Continuum Model. Bulletin of the Chemical Society of Japan, 2017, 90, 451-460.	2.0	11
206	Computerized implementation of higherâ€order electronâ€correlation methods and their linearâ€scaling divideâ€andâ€conquer extensions. Journal of Computational Chemistry, 2017, 38, 2520-2527.	1.5	11
207	Extension and acceleration of relativistic density functional theory based on transformed density operator. Journal of Chemical Physics, 2019, 150, 164104.	1.2	11
208	Machine-learned electron correlation model based on frozen core approximation. Journal of Chemical Physics, 2020, 153, 184108.	1.2	11
209	Trajectory Surface Hopping Approach to Condensed-Phase Nonradiative Relaxation Dynamics Using Divide-and-Conquer Spin-Flip Time-Dependent Density-Functional Tight Binding. Journal of Chemical Theory and Computation, 2021, 17, 1290-1300.	2.3	11
210	π–σ* hyperconjugation mechanism on methyl rotation in cationic state of substituted toluenes. Chemical Physics, 2001, 273, 191-196.	0.9	10
211	Density Functional Theory Study on the Reaction Mechanism of Reductants for Electroless Ag Deposition Process. Journal of the Electrochemical Society, 2007, 154, D273.	1.3	10
212	Theoretical Determination of Hypervalent Bond Energy of 10–S–3 Sulfurane Derivatives. Chemistry Letters, 2007, 36, 1120-1121.	0.7	10
213	Application of Bond Energy Density Analysis (Bond-EDA) to Diels–Alder Reaction. Chemistry Letters, 2007, 36, 616-617.	0.7	10
214	Quantitative approach to the understanding of catalytic effect of metal oxides on the desorption reaction of MgH ₂ . International Journal of Quantum Chemistry, 2009, 109, 2793-2800.	1.0	10
215	Assessment of local response dispersion method for open-shell systems. Chemical Physics Letters, 2013, 556, 386-392.	1.2	10
216	Recent advances in quantumâ€mechanical molecular dynamics simulations of proton transfer mechanism in various waterâ€based environments. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1419.	6.2	10

#	Article	IF	CITATIONS
217	Fast Nonadiabatic Molecular Dynamics via Spin-Flip Time-Dependent Density-Functional Tight-Binding Approach: Application to Nonradiative Relaxation of Tetraphenylethylene with Locked Aromatic Rings. Journal of Chemical Theory and Computation, 2020, 16, 7299-7313.	2.3	10
218	Hierarchical parallelization of divideâ€andâ€conquer density functional tightâ€binding molecular dynamics and metadynamics simulations. Journal of Computational Chemistry, 2020, 41, 1759-1772.	1.5	10
219	Large-scale excited-state calculation using dynamical polarizability evaluated by divide-and-conquer based coupled cluster linear response method. Journal of Chemical Physics, 2020, 152, 024102.	1.2	10
220	Unveiling controlling factors of the S/S1 minimum energy conical intersection (2): Application to penalty function method. Journal of Chemical Physics, 2020, 152, 144108.	1.2	10
221	Assessing locally range-separated hybrid functionals from a gradient expansion of the exchange energy density. Journal of Chemical Physics, 2021, 154, 214101.	1.2	10
222	Quantum-Mechanical Molecular Dynamics Simulations on Secondary Proton Transfer in Bacteriorhodopsin Using Realistic Models. Journal of Physical Chemistry B, 2021, 125, 10947-10963.	1.2	10
223	Theoretical Study of Hypervalent Bonds in 1,6-Diaza-1,6-dihydro- and 1,6-Dihydro-1,6-dioxapentalene Systems with a Heteroatom X at 6a Position (X = 14–16 Group Atoms). Bulletin of the Chemical Society of Japan, 2010, 83, 892-899.	2.0	9
224	Theoretical Analysis of Adsorption Structure of Hydrated Hypophosphite Ion on Pd (111) Surface. Electrochemistry, 2012, 80, 222-225.	0.6	9
225	Theoretical Analysis of the Oxidation Potentials of Organic Electrolyte Solvents. ECS Electrochemistry Letters, 2015, 4, A103-A105.	1.9	9
226	Implementation of Analytical Energy Gradient of Spin-Dependent General Hartree–Fock Method Based on the Infinite-Order Douglas–Kroll–Hess Relativistic Hamiltonian with Local Unitary Transformation. Journal of Chemical Theory and Computation, 2016, 12, 2181-2190.	2.3	9
227	Theoretical study on ammonia cluster ions: Nature of kinetic magic number. Journal of Chemical Physics, 2000, 112, 7409-7415.	1.2	8
228	PRACTICAL PERFORMANCE ASSESSMENT OF ACCOMPANYING COORDINATE EXPANSION RECURRENCE RELATION ALGORITHM FOR COMPUTATION OF ELECTRON REPULSION INTEGRALS. Journal of Theoretical and Computational Chemistry, 2005, 04, 139-149.	1.8	8
229	Development of analytic energy gradient method in nuclear orbital plus molecular orbital theory. International Journal of Quantum Chemistry, 2007, 107, 2575-2585.	1.0	8
230	Bond energy analysis revisited and designed toward a rigorous methodology. Journal of Chemical Physics, 2011, 135, 124105.	1.2	8
231	Divideâ€andâ€conquerâ€based quantum chemical study for interaction between HIVâ€1 reverse transcriptase and MKâ€4965 inhibitor. International Journal of Quantum Chemistry, 2013, 113, 510-517.	1.0	8
232	Largeâ€scale twoâ€component relativistic quantumâ€chemical theory: Combination of the infiniteâ€order douglas–kroll–hess method with the local unitary transformation scheme and the divideâ€andâ€conquer method. International Journal of Quantum Chemistry, 2015, 115, 253-257.	1.0	8
233	Density-Functional Tight-Binding Study of Carbonaceous Species Diffusion on the (100)-13-Al ₂ O ₃ Surface. ACS Omega, 2020, 5, 6862-6871.	1.6	8
234	Weighted histogram analysis method for multiple short-time metadynamics simulations. Chemical Physics Letters, 2020, 751, 137384.	1.2	8

#	Article	IF	CITATIONS
235	An Element‧ubstituted Cyclobutadiene Exhibiting Highâ€Energy Blue Phosphorescence. Angewandte Chemie, 2021, 133, 21988-21994.	1.6	8
236	Ab initio MD simulation of collision reaction between ammonia cluster ion and ammonia monomer. Computational and Theoretical Chemistry, 2002, 592, 61-67.	1.5	7
237	Reply to "Comment on â€~Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory' ―[J. Chem. Phys. 123, 237101 (2005)]. Journal of Chemical Physics, 2005, 12 237102.	3, 1.2	7
238	Analysis on Excitation of Molecules with <i>lh</i> Symmetry: Frozen Orbital Analysis and General Rules. Chemistry Letters, 2008, 37, 322-323.	0.7	7
239	New Expression of the Chemical Bond in Hydrides Using Atomization Energies. Advances in Quantum Chemistry, 2008, , 145-160.	0.4	7
240	Theoretical Study of Bond-Switching in 1,6-Dihydro-6a-thia-1,6-diazapentalene (10-S-3) Systems Compared with Corresponding Oxygen Analogues. Bulletin of the Chemical Society of Japan, 2010, 83, 520-529.	2.0	7
241	Extension of accompanying coordinate expansion and recurrence relation method for generalâ€contraction basis sets. Journal of Computational Chemistry, 2014, 35, 1517-1527.	1.5	7
242	Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions. Journal of Chemical Physics, 2015, 142, 204110.	1.2	7
243	Gauge-origin independent formalism of two-component relativistic framework based on unitary transformation in nuclear magnetic shielding constant. Journal of Chemical Physics, 2018, 148, 114109.	1.2	7
244	Virtual Reaction Condition Optimization based on Machine Learning for a Small Number of Experiments in High-dimensional Continuous and Discrete Variables. Chemistry Letters, 2019, 48, 961-964.	0.7	7
245	Restoring the iso-orbital limit of the kinetic energy density in relativistic density functional theory. Journal of Chemical Physics, 2019, 151, 174114.	1.2	7
246	Relativistic local hybrid functionals and their impact on 1s core orbital energies. Journal of Chemical Physics, 2020, 152, 214103.	1.2	7
247	Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over the CeO ₂ (111) surface. Physical Chemistry Chemical Physics, 2021, 23, 4509-4516.	1.3	7
248	Quantum Chemical Calculations for up to One Hundred Million Atoms Using D <scp>cdftbmd</scp> Code on Supercomputer Fugaku. Chemistry Letters, 2021, 50, 1546-1550.	0.7	7
249	Simultaneous determination of nuclear and electronic wave functions without Born–Oppenheimer approximation: Ab initio NO+MO/HF theory. International Journal of Quantum Chemistry, 2002, 86, 511.	1.0	7
250	Solvent Selection Scheme Using Machine Learning Based on Physicochemical Description of Solvent Molecules: Application to Cyclic Organometallic Reaction. Bulletin of the Chemical Society of Japan, 2020, 93, 841-845.	2.0	7
251	Tetraaryldiborane(4) Can Emit Dual Fluorescence Responding to the Structural Change around the B–B Bond. Angewandte Chemie - International Edition, 2022, 61,	7.2	7
252	Scalable Ehrenfest Molecular Dynamics Exploiting the Locality of Density-Functional Tight-Binding Hamiltonian. Journal of Chemical Theory and Computation, 2021, 17, 7384-7396.	2.3	7

#	Article	IF	CITATIONS
253	Ab Initio Molecular Orbital Study of the Electron Emission Mechanism of TiCl ₃ as a Reductant for an Electroless Deposition Process. Electrochemistry, 2004, 72, 462-465.	0.6	6
254	Observation by UVâ^'Visible and NMR Spectroscopy and Theoretical Confirmation of 4-Isopropyltropolonate Ion, 4-Isopropyltropolone (Hinokitiol), and Protonated 4-Isopropyltropolone in Acetonitrile. Journal of Chemical & Engineering Data, 2010, 55, 1986-1989.	1.0	6
255	Theoretical Design of Hexacoordinate Hypervalent Carbon Compounds by Analyzing Substituent Effects. Bulletin of the Chemical Society of Japan, 2011, 84, 505-510.	2.0	6
256	Quantitative evaluation of catalytic effect of metal chlorides on the decomposition reaction of NaAlH ₄ . International Journal of Quantum Chemistry, 2011, 111, 950-960.	1.0	6
257	Linearity condition for orbital energies in density functional theory (IV): Determination of rangeâ€determining parameter. International Journal of Quantum Chemistry, 2013, 113, 245-251.	1.0	6
258	Development of spinâ€dependent relativistic openâ€shell <scp>H</scp> artree– <scp>F</scp> ock theory with timeâ€reversal symmetry (I): The unrestricted approach. International Journal of Quantum Chemistry, 2017, 117, e25356.	1.0	6
259	Universal formulation of second-order generalized MÃ,ller–Plesset perturbation theory for a spin-dependent two-component relativistic many-electron Hamiltonian. Chemical Physics Letters, 2017, 675, 137-144.	1.2	6
260	Spectroscopic and Computational Analyses of Liquid–Liquid Interfacial Reaction Mechanism of Boric Acid Esterification with 2,2,4-Trimethyl-1,3-pentanediol in Boron Extraction Processes. Journal of Physical Chemistry C, 2018, 122, 10423-10429.	1.5	6
261	Quantum chemical approach for positron annihilation spectra of atoms and molecules beyond plane-wave approximation. Journal of Chemical Physics, 2018, 148, 184110.	1.2	6
262	Large-Scale and Highly Accurate Relativistic Quantum-Chemical Scheme:toward Establishment ofTheoretical Foundation for Element Strategy. Journal of Computer Chemistry Japan, 2014, 13, 1-17.	0.0	6
263	Theoretical Design of Monofunctional Psoralen Compounds in Photochemotherapy. Bulletin of the Chemical Society of Japan, 2007, 80, 1341-1349.	2.0	5
264	Ab Initio Molecular Dynamics Simulation of the Energy-Relaxation Process of the Protonated Water Dimer. Journal of Physical Chemistry A, 2007, 111, 2062-2066.	1.1	5
265	Linear-scaling electronic structure calculation program based on divide-and-conquer method. Procedia Computer Science, 2011, 4, 1145-1150.	1.2	5
266	A divide-and-conquer method with approximate Fermi levels for parallel computations. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	5
267	Linearity condition for orbital energies in density functional theory (V): Extension to excited state calculations. Chemical Physics Letters, 2015, 618, 30-36.	1.2	5
268	Informaticsâ€Based Energy Fitting Scheme for Correlation Energy at Complete Basis Set Limit. Journal of Computational Chemistry, 2016, 37, 2304-2315.	1.5	5
269	Development of spinâ€dependent relativistic openâ€shell Hartree–Fock theory with timeâ€reversal symmetry (II): The restricted openâ€shell approach. International Journal of Quantum Chemistry, 2017, 117, e25366.	1.0	5
270	Efficient poleâ€search algorithm for dynamic polarizability: Toward alternative excitedâ€state calculation for large systems. Journal of Computational Chemistry, 2017, 38, 7-14.	1.5	5

#	Article	IF	CITATIONS
271	Derivative of electron repulsion integral using accompanying coordinate expansion and transferred recurrence relation method for long contraction and high angular momentum. International Journal of Quantum Chemistry, 2018, 118, e25640.	1.0	5
272	Fractional-occupation-number based divide-and-conquer coupled-cluster theory. Chemical Physics Letters, 2018, 712, 184-189.	1.2	5
273	Development of Linear-Scaling Relativistic Quantum Chemistry Covering the Periodic Table. Bulletin of the Chemical Society of Japan, 2021, 94, 1664-1681.	2.0	5
274	Database-assisted local unitary transformation method for two-electron integrals in two-component relativistic calculations. Chemical Physics Letters, 2021, 777, 138691.	1.2	5
275	An Air―and Waterâ€Stable B ₄ N ₄ â€Heteropentalene Serving as a Host Material for a Phosphorescent OLED. Angewandte Chemie, 2021, 133, 24005-24011.	1.6	5
276	Multiple protonation states in ligand-free SARS-CoV-2 main protease revealed by large-scale quantum molecular dynamics simulations. Chemical Physics Letters, 2022, 794, 139489.	1.2	5
277	Theoretical Study of the Ionized Electronic Structure of the Octahedral Complex MoF6. Bulletin of the Chemical Society of Japan, 1996, 69, 1893-1899.	2.0	4
278	Estimation of Redox Potential of Strained Si by Density Functional Theory Calculation. Journal of Physical Chemistry C, 2008, 112, 3538-3542.	1.5	4
279	Atomization energy approach to the quantitative evaluation of catalytic activities of metal oxides during dehydrogenation of MgH2. Journal of Alloys and Compounds, 2011, 509, S612-S615.	2.8	4
280	Linearity condition for orbital energies in density functional theory (III): Benchmark of total energies. Journal of Computational Chemistry, 2013, 34, 1218-1225.	1.5	4
281	Divide-and-Conquer Electronic-Structure Study on the Mechanism of the West Nile Virus NS3 Protease Inhibitor. Bulletin of the Chemical Society of Japan, 2013, 86, 67-74.	2.0	4
282	Superphenalenyl: Theoretical Design of a π-Conjugated Planar Hydrocarbon Radical. Chemistry Letters, 2013, 42, 1386-1387.	0.7	4
283	Local response dispersion method in periodic systems: Implementation and assessment. Journal of Computational Chemistry, 2015, 36, 303-311.	1.5	4
284	Relativistic frozen core potential scheme with relaxation of core electrons. Chemical Physics Letters, 2016, 663, 97-103.	1.2	4
285	Quantum chemical approach for condensed-phase thermochemistry (IV): Solubility of gaseous molecules. Chemical Physics Letters, 2016, 655-656, 103-109.	1.2	4
286	Robust design of D-Ï€-A model compounds using digital structures for organic DSSC applications. Journal of Molecular Graphics and Modelling, 2021, 102, 107798.	1.3	4
287	ls Oxygen Diffusion Faster in Bulk CeO2 or on a (111)-CeO2 Surface? A Theoretical Study. Chemistry Letters, 2021, 50, 568-571.	0.7	4
288	Rules for Excited States of Degenerate Systems: Interpretation by Frozen Orbital Analysis. Progress in Theoretical Chemistry and Physics, 2009, , 363-395.	0.2	4

#	Article	IF	CITATIONS
289	Theoretical study on the electronic spectrum of TcO. Theoretica Chimica Acta, 1995, 92, 351.	0.9	4
290	Dynamic hetero-metallic bondings visualized by sequential atom imaging. Nature Communications, 2022, 13, .	5.8	4
291	Theoretical Study on the Thermal and Photochemical Isomerization Reactions of Dicyanoacetylene Complex of Platinum Pt(PH3)2(C4N2). Journal of Physical Chemistry A, 1997, 101, 973-980.	1.1	3
292	Characterization of strained Si wafer surface by density functional theory analysis. Electrochimica Acta, 2005, 51, 1000-1003.	2.6	3
293	New Expression of the Chemical Bond in Perovskite-Type Oxides. Materials Science Forum, 2007, 561-565, 1823-1826.	0.3	3
294	Constrained self-consistent field method revisited toward theoretical designs of functional materials under external field. Chemical Physics Letters, 2012, 530, 132-136.	1.2	3
295	Theoretical Study on Stability of Lithium Ion Battery in Charging Process: Analysis Based on Partial Charge and Partial Energy. Journal of the Electrochemical Society, 2013, 160, A1364-A1368.	1.3	3
296	Theoretical Study on the Selective Fluorescence of PicoGreen: Binding Models and Photophysical Properties. Bulletin of the Chemical Society of Japan, 2014, 87, 267-273.	2.0	3
297	Relativistic effect on enthalpy of formation for transition-metal complexes. Chemical Physics Letters, 2017, 673, 24-29.	1.2	3
298	Quantum chemical approach for condensed-phase thermochemistry (V): Development of rigid-body type harmonic solvation model. Chemical Physics Letters, 2018, 700, 149-155.	1.2	3
299	Bond Energy Density Analysis Combined with Informatics Technique. Journal of Physical Chemistry A, 2019, 123, 7777-7784.	1.1	3
300	Electronic structures of the ground and excited states of Mo(CO)6: SAC-CI calculation and frozen orbital analysis. Molecular Physics, 1997, 92, 523-534.	0.8	3
301	Photoexcited charge manipulation in conjugated polymers bearing a Ru(<scp>ii</scp>) complex catalyst for visible-light CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 19821-19828.	5.2	3
302	Determination of active sites based on unified analysis of potential energy profile in chemical reaction: Application to C–H activation of methane by Ti(IV)-imido complex. Chemical Physics Letters, 2008, 460, 347-351.	1.2	2
303	Extension of energy density analysis to periodic-boundary-condition calculations with plane-wave basis functions. Physical Review B, 2010, 81, .	1.1	2
304	Construction of orbital-specific hybrid functional by imposing the linearity condition for orbital energies in density functional theory. Procedia Computer Science, 2011, 4, 1151-1156.	1.2	2
305	DFT Analysis on Cathodic Reaction of Au Thiosulfate Complex at Au(111) Surface - Cathodic Reaction Modeling. ECS Transactions, 2014, 58, 73-79.	0.3	2
306	Acceleration of self onsistent field convergence in <i>ab initio</i> molecular dynamics simulation with multiconfigurational wave function. Journal of Computational Chemistry, 2014, 35, 1473-1480.	1.5	2

#	Article	IF	CITATIONS
307	Release of DCDFTBMD Program. Journal of Computer Chemistry Japan, 2018, 17, A21-A27.	0.0	2
308	Relativistic Effect on Homogeneous Catalytic Reaction by Cationic Iridium Catalysts. Journal of Computer Chemistry Japan, 2019, 18, 136-138.	0.0	2
309	Finite-temperature-based time-dependent density-functional theory method for static electron correlation systems. Journal of Chemical Physics, 2020, 152, 244111.	1.2	2
310	Effects of A-site composition of perovskite (Sr1â^'xBaxZrO3) oxides on H atom adsorption, migration, and reaction. RSC Advances, 2021, 11, 7621-7626.	1.7	2
311	Description of Core-Ionized and Core-Excited States by Density Functional Theory and Time-Dependent Density Functional Theory. Progress in Theoretical Chemistry and Physics, 2012, , 275-308.	0.2	2
312	Release of Relativistic Quantum Chemical Calculation Program RAQET. Journal of Computer Chemistry Japan, 2019, 18, A6-A11.	0.0	2
313	4.ã,ャリã,¢ã,¤ãƒ³ã®è"±æº¶åª'å'ŒéŽç∵ã®ç†è«−的解枕 Electrochemistry, 2014, 82, 1098-1101.	0.6	2
314	Quantum Mechanical Molecular Dynamics Simulations of Polaron Formation in a Perovskite Solar Cell Material. Journal of Computer Chemistry Japan, 2019, 18, 142-144.	0.0	2
315	Multiscale Simulation of Irregular Shape Evolution during the Initial Stage of Zn Electrodeposition on a Negative Electrode Surface. Journal of Physical Chemistry C, 2022, 126, 5224-5232.	1.5	2
316	Analysis of the behavior of Zn atoms with a Pb additive on the surface during Zn electrodeposition. Electrochemistry Communications, 2022, 138, 107291.	2.3	2
317	Electronic structures of the ground and excited states of Mo(CO)6 : SAC-CI calculation and frozen orbital analysis. Molecular Physics, 1997, 92, 523-534.	0.8	1
318	Ab initio molecular orbital model of scanning tunneling microscopy. Benzene and benzene adsorbed on a Ag surface. Chemical Physics Letters, 1997, 264, 371-375.	1.2	1
319	A theoretical study of the photochemical reductive elimination and thermal oxidative addition of molecular hydrogen from and to the Ir-complex. Theoretical Chemistry Accounts, 1998, 99, 210-214.	0.5	1
320	Theoretical study on excitation dynamics of 5-dibenzosuberene and its derivatives. Journal of Molecular Structure, 2005, 735-736, 211-216.	1.8	1
321	Non-Born-Oppenheimer Theory for Simultaneous Determination of Nuclear and Electronic Wave Functions: Nuclear Orbital plus Molecular Orbital (NOMO) Theory. Molecular Science, 2007, 1, A0010-A0010.	0.2	1
322	Unusual Energy Balance Between Atoms in Postperovskite MgSiO ₃ . Journal of the American Ceramic Society, 2010, 93, 3449-3454.	1.9	1
323	Energy Expression of the Chemical Bond Between Atoms in Hydrides and Oxides and Its Application to Materials Design. , 2015, , 183-213.		1
324	Decomposition of Effective Exchange Integrals of Radical Dimers Using Bond Energy Density Analysis. Chemistry Letters, 2017, 46, 879-882.	0.7	1

#	Article	IF	CITATIONS
325	Theoretical Analysis on Temperature- and Pressure-Dependences of NO-CO-O ₂ Reaction on Rh(111) Surface. Journal of Computer Chemistry Japan, 2019, 18, 70-77.	0.0	1
326	Cover Image, Volume 10, Issue 1. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1459.	6.2	1
327	Picture-change correction in relativistic density functional theory. Physical Chemistry Chemical Physics, 2021, 23, 15458-15474.	1.3	1
328	Electronic Theory of the Chemisorption and Catalytic Reactions on Metal Surface Hyomen Kagaku, 1993, 14, 603-609.	0.0	1
329	Titelbild: Tetraaryldiborane(4) Can Emit Dual Fluorescence Responding to the Structural Change around the B–B Bond (Angew. Chem. 1/2022). Angewandte Chemie, 2022, 134, .	1.6	1
330	Theoretical study on the excited states of psoralen compounds bonded to a thymine residue. Journal of Computational Chemistry, 2004, 25, 309-309.	1.5	0
331	Collision Reactions between CN and C2H2: Short-Time Fourier Transform Analysis of AIMD Simulation. AIP Conference Proceedings, 2006, , .	0.3	0
332	Kinetic energy decomposition scheme based on information theory. Journal of Computational Chemistry, 2013, 34, 2787-2795.	1.5	0
333	Efficient two-component relativistic method for large systems. AIP Conference Proceedings, 2015, , .	0.3	0
334	Development of Reaction Prediction Scheme Based on Machine Learning with Quantum Chemical Descriptors. Journal of Computer Chemistry Japan, 2016, 15, 63-65.	0.0	0
335	Commentary toward the 20th Anniversary of the Society ofComputer Chemistry, Japan. Journal of Computer Chemistry Japan, 2021, 20, A26-A40.	0.0	0
336	Innentitelbild: An Element‣ubstituted Cyclobutadiene Exhibiting Highâ€Energy Blue Phosphorescence (Angew. Chem. 40/2021). Angewandte Chemie, 2021, 133, 21766-21766.	1.6	0
337	Tetraaryldiborane(4) Can Emit Dual Fluorescence Responding to the Structural Change around the B–B Bond. Angewandte Chemie, 0, , .	1.6	0
338	Recent Trends in Quantum Chemical Calculations for Surface-Molecule Interacting Systems. Hyomen Kagaku, 2007, 28, 150-159.	0.0	0
339	Electronic Transition Process of Fluorescence Appearing in Various Organic Polymers. IEEJ Transactions on Fundamentals and Materials, 2016, 136, 205-211.	0.2	0
340	Harmonic Solvation Model (HSM) for Evaluation of Condensed-Phase Free Energy. Journal of Computer Chemistry Japan, 2017, 16, 83-88.	0.0	0
341	Theoretical Analysis of NO-CO Reaction Involving Lattice Oxygen. Journal of Computer Chemistry Japan, 2019, 18, 139-141.	0.0	0
342	Development of Bond Energy Density Analysis with Informatics Technique. Journal of Computer Chemistry Japan, 2019, 18, 152-155.	0.0	0

#	Article	IF	CITATIONS
343	Surface Reaction Simulation based on Divide-and-Conquer Type Density Functional Tight-Binding Molecular Dynamics (DC-DFTB-MD) MethodÂ: Case for Proton Diffusion on Pt(111) Surface. Vacuum and Surface Science, 2019, 62, 486-491.	0.0	0
344	Development of Quantum Algorithm qUCC-LR for Excited-State Calculation Using Dynamic Polarizability. Journal of Computer Chemistry Japan, 2021, 20, 140-143.	0.0	0