Thierry Doco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3091409/publications.pdf Version: 2024-02-01

THIEDDA DOCO

#	Article	IF	CITATIONS
1	Structural characteristics of Saccharomyces cerevisiae mannoproteins: Impact of their polysaccharide part. Carbohydrate Polymers, 2022, 277, 118758.	5.1	8
2	Impact of the variety on the adsorption of anthocyanins and tannins on grape flesh cell walls. Journal of the Science of Food and Agriculture, 2022, 102, 3379-3392.	1.7	3
3	Effect of applying elicitors to Vitis vinifera L. cv. Monastrell at different ripening times on the complex carbohydrates of the resulting wines. European Food Research and Technology, 2022, 248, 2369-2381.	1.6	2
4	Characterization of polysaccharide extracts recovered from different grape and winemaking products. Food Research International, 2022, 157, 111480.	2.9	13
5	Recent advances in the knowledge of wine oligosaccharides. Food Chemistry, 2021, 342, 128330.	4.2	13
6	Impact of grape variety, berry maturity and size on the extractability of skin polyphenols during model wineâ€like maceration experiments. Journal of the Science of Food and Agriculture, 2021, 101, 3257-3269.	1.7	9
7	Acacia gums new fractions and sparkling base wines: How their biochemical and structural properties impact foamability?. Food Chemistry, 2021, 354, 129477.	4.2	3
8	Impact of industrial yeast derivative products on the modification of wine aroma compounds and sensorial profile. A review. Food Chemistry, 2021, 358, 129760.	4.2	14
9	Fractionation of Acacia seyal gum by ion exchange chromatography. Food Hydrocolloids, 2020, 98, 105283.	5.6	7
10	Inhibition Mechanisms of Wine Polysaccharides on Salivary Protein Precipitation. Journal of Agricultural and Food Chemistry, 2020, 68, 2955-2963.	2.4	21
11	Improvement of the foamability of sparkling base wines by the addition of Acacia gums. Food Chemistry, 2020, 313, 126062.	4.2	6
12	Impact of Botrytis cinerea Contamination on the Characteristics and Foamability of Yeast Macromolecules Released during the Alcoholic Fermentation of a Model Grape Juice. Molecules, 2020, 25, 472.	1.7	6
13	The colloidal stabilization of young red wine by Acacia senegal gum: The involvement of the protein backbone from the protein-rich arabinogalactan-proteins. Food Hydrocolloids, 2019, 97, 105176.	5.6	5
14	The impact of distillation process on the chemical composition and potential prebiotic activity of different oligosaccharidic fractions extracted from grape seeds. Food Chemistry, 2019, 285, 423-430.	4.2	17
15	Recovery, structure and physicochemical properties of an aggregate-rich fraction from Acacia senegal gum. Food Hydrocolloids, 2019, 89, 864-873.	5.6	12
16	Polysaccharides, oligosaccharides and nitrogenous compounds change during the ageing of Tempranillo and Verdejo sparkling wines. Journal of the Science of Food and Agriculture, 2018, 98, 291-303.	1.7	26
17	Preharvest Application of Elicitors to Monastrell Grapes: Impact on Wine Polysaccharide and Oligosaccharide Composition. Journal of Agricultural and Food Chemistry, 2018, 66, 11151-11157.	2.4	15
18	Flexibility and Hydration of Amphiphilic Hyperbranched Arabinogalactan-Protein from Plant Exudate: A Volumetric Perspective. Colloids and Interfaces, 2018, 2, 11.	0.9	14

THIERRY DOCO

#	Article	IF	CITATIONS
19	Effect of grape juice press fractioning on polysaccharide and oligosaccharide compositions of Pinot meunier and Chardonnay Champagne base wines. Food Chemistry, 2017, 232, 49-59.	4.2	25
20	The composition of cell walls from grape skin in <i>Vitis vinifera</i> intraspecific hybrids. Journal of the Science of Food and Agriculture, 2017, 97, 4029-4035.	1.7	22
21	The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydrate Polymers, 2017, 177, 77-85.	5.1	77
22	Polysaccharides and Oligosaccharides Produced on Malvar Wines Elaborated with <i>Torulaspora delbrueckii</i> CLI 918 and <i>Saccharomyces cerevisiae</i> CLI 889 Native Yeasts from D.O. "Vinos de Madrid― Journal of Agricultural and Food Chemistry, 2017, 65, 6656-6664.	2.4	11
23	Influence of Grape Maturity on Complex Carbohydrate Composition of Red Sparkling Wines. Journal of Agricultural and Food Chemistry, 2016, 64, 5020-5030.	2.4	24
24	Models based on ultraviolet spectroscopy, polyphenols, oligosaccharides and polysaccharides for prediction of wine astringency. Food Chemistry, 2016, 190, 357-363.	4.2	68
25	Acacia senegal vs. Acacia seyal gums – Part 1: Composition andÂstructure of hyperbranched plant exudates. Food Hydrocolloids, 2015, 51, 41-53.	5.6	116
26	Oligosaccharides of Cabernet Sauvignon, Syrah and Monastrell red wines. Food Chemistry, 2015, 179, 311-317.	4.2	27
27	Complex Carbohydrates of Red Wine: Characterization of the Extreme Diversity of Neutral Oligosaccharides by ESI-MS. Journal of Agricultural and Food Chemistry, 2015, 63, 671-682.	2.4	18
28	Protein/Polysaccharide Interactions and Their Impact on Haze Formation in White Wines. Journal of Agricultural and Food Chemistry, 2015, 63, 10042-10053.	2.4	23
29	Determination of Must and Wine Polysaccharides by Gas Chromatography-Mass Spectrometry (GC-MS) and Size-Exclusion Chromatography (SEC). , 2015, , 1265-1297.		4
30	Exopolysaccharide (EPS) Synthesis by Oenococcus oeni: From Genes to Phenotypes. PLoS ONE, 2014, 9, e98898.	1.1	65
31	Effect of enzyme additions on the oligosaccharide composition of Monastrell red wines from four different wine-growing origins in Spain. Food Chemistry, 2014, 156, 151-159.	4.2	25
32	Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency. Food Chemistry, 2014, 154, 44-51.	4.2	107
33	Determination of Must and Wine Polysaccharides by Gas Chromatography-Mass Spectrometry (GC-MS) and Size-Exclusion Chromatography (SEC). , 2014, , 1-28.		5
34	Determination of Must and Wine Polysaccharides by Gas Chromatography–Mass Spectrometry (GC–MS) and Size-Exclusion Chromatography (SEC). , 2014, , 1-28.		3
35	The influence of wine polymers on the spontaneous precipitation of calcium tartrate in a model wine solution. International Journal of Food Science and Technology, 2013, 48, 2676-2682.	1.3	2
36	Polysaccharide Composition of Monastrell Red Wines from Four Different Spanish Terroirs: Effect of Wine-Making Techniques. Journal of Agricultural and Food Chemistry, 2013, 61, 2538-2547.	2.4	40

THIERRY DOCO

#	Article	IF	CITATIONS
37	Purification and Structural Characterization of a Type II Arabinogalactan-Protein from Champagne Wine. American Journal of Enology and Viticulture, 2013, 64, 364-369.	0.9	15
38	Effect of Macerating Enzymes on the Oligosaccharide Profiles of Merlot Red Wines. Journal of Agricultural and Food Chemistry, 2011, 59, 6558-6567.	2.4	30
39	Effect of Aging on Lees and of Three Different Dry Yeast Derivative Products on Verdejo White Wine Composition and Sensorial Characteristics. Journal of Agricultural and Food Chemistry, 2011, 59, 12433-12442.	2.4	29
40	Isolation of Carignan and Merlot red wine oligosaccharides and their characterization by ESI-MS. Carbohydrate Polymers, 2010, 79, 747-754.	5.1	45
41	Effect of macerating enzyme treatment on the polyphenol and polysaccharide composition of red wines. Food Chemistry, 2010, 118, 369-376.	4.2	141
42	Presence of rhamnogalacturonan II in the juices produced by enzymatic liquefaction of Agave pulquero stem (Agave mapisaga). Carbohydrate Polymers, 2009, 77, 870-875.	5.1	5
43	Changes in Polysaccharide and Protein Composition of Cell Walls in Grape Berry Skin (Cv. Shiraz) during Ripening and Over-Ripening. Journal of Agricultural and Food Chemistry, 2009, 57, 2955-2960.	2.4	70
44	Analysis of the Main Components of the Aguamiel Produced by the Maguey-Pulquero (Agave mapisaga) throughout the Harvest Period. Journal of Agricultural and Food Chemistry, 2008, 56, 3682-3687.	2.4	78
45	Effect of Flash Release and Pectinolytic Enzyme Treatments on Wine Polysaccharide Composition. Journal of Agricultural and Food Chemistry, 2007, 55, 6643-6649.	2.4	97
46	Interactions between aroma compounds and whole mannoprotein isolated from Saccharomyces cerevisiae strains. Food Chemistry, 2007, 100, 22-30.	4.2	161
47	The pectic polysaccharide rhamnogalacturonan II is present as a dimer in pectic populations of bilberries and black currants in muro and in juice. Carbohydrate Polymers, 2006, 65, 521-528.	5.1	39
48	Formation of Micella Containing Solubilized Sterols during Rehydration of Active Dry Yeasts Improves Their Fermenting Capacity. Journal of Agricultural and Food Chemistry, 2005, 53, 8025-8032.	2.4	48
49	The three-dimensional structure of the mega-oligosaccharide rhamnogalacturonan II monomer: a combined molecular modeling and NMR investigation. Carbohydrate Research, 2003, 338, 651-671.	1.1	46
50	Polysaccharides from grape berry cell walls. Part II. Structural characterization of the xyloglucan polysaccharides. Carbohydrate Polymers, 2003, 53, 253-261.	5.1	64
51	The polysaccharides of red wine: total fractionation and characterization. Carbohydrate Polymers, 2003, 54, 439-447.	5.1	186
52	Chronic oral administration of rhamnogalacturonan-II dimer, a pectic polysaccharide, failed to accelerate body lead detoxification after chronic lead exposure in rats. British Journal of Nutrition, 2002, 87, 47-54.	1.2	10
53	Aggregation of grape seed tannins in model wine—effect of wine polysaccharides. Food Hydrocolloids, 2002, 16, 17-23.	5.6	235
54	Involvement of pectin methyl-esterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall pectins. Phytochemistry, 2001, 58, 693-701.	1.4	78

THIERRY DOCO

#	Article	IF	CITATIONS
55	Structural characterization of the pectic polysaccharide rhamnogalacturonan II: evidence for the backbone location of the aceric acid-containing oligoglycosyl side chain. Carbohydrate Research, 2000, 326, 277-294.	1.1	105
56	Analysis of cell wall neutral sugar composition, β-galactosidase activity and a related cDNA clone throughout the development of Vitis vinifera grape berries. Plant Physiology and Biochemistry, 2000, 38, 289-300.	2.8	65
57	The Rhamnogalacturonan-II Dimer Decreases Intestinal Absorption and Tissue Accumulation of Lead in Rats. Journal of Nutrition, 2000, 130, 249-253.	1.3	36
58	Speciation of metal-carbohydrate complexes in fruit and vegetable samples by size-exclusion HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 1999, 14, 639-644.	1.6	45
59	Evolution of Castalagin and Vescalagin in Ethanol Solutions. Identification of New Derivatives. Journal of Agricultural and Food Chemistry, 1999, 47, 2060-2066.	2.4	39
60	Electrospray Contribution to Structural Analysis of Condensed Tannin Oligomers and Polymers. , 1999, , 223-244.		10
61	A-type proanthocyanidins from pericarp of Litchi chinensis. Phytochemistry, 1998, 48, 1251-1258.	1.4	85
62	Speciation analysis for biomolecular complexes of lead in wine by size-exclusion high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 1998, 13, 749-754.	1.6	63
63	Rhamnogalacturonan II, a dominant polysaccharide in juices produced by enzymic liquefaction of fruits and vegetables. Carbohydrate Research, 1997, 297, 181-186.	1.1	75
64	Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var. kermerrien) skin and pulp. Phytochemistry, 1997, 44, 351-357.	1.4	155
65	Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Cross-linked by a Borate Ester. Journal of Biological Chemistry, 1996, 271, 22923-22930.	1.6	472
66	Structural characterization of red wine rhamnogalacturonan II. Carbohydrate Research, 1996, 290, 183-197.	1.1	203
67	Study of the acetaldehyde induced polymerisation of flavan-3-ols by liquid chromatography-ion spray mass spectrometry. Journal of Chromatography A, 1996, 752, 85-91.	1.8	140
68	The pectic polysaccharide rhamnogalacturonan II is a major component of the polysaccharides present in fruit-derived products. Progress in Biotechnology, 1996, 14, 67-78.	0.2	3
69	Isolation and characterisation of a rhamnogalacturonan II from red wine. Carbohydrate Research, 1993, 243, 333-343.	1.1	75
70	Rapid isolation and estimation of polysaccharide from fermented skim milk with Streptococcus salivarius subsp. thermophilus by coupled anion exchange and gel-permeation high-performance liquid chromatography. Journal of Dairy Research, 1991, 58, 147-150.	0.7	14
71	Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydrate Research, 1990, 198, 313-321.	1.1	126
72	Preparation of polysaccharide fromStreptococcus thermophilus using an enzymatic ultrafiltration reactor. Biotechnology Letters, 1989, 3, 393-396.	0.5	2