List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3091318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Mn Content on the Passivation and Corrosion of Al0.3Cr0.5Fe2MnxMo0.15Ni1.5Ti0.3 Compositionally Complex Face-Centered Cubic Alloys. Corrosion, 2022, 78, 32-48.	1.1	11
2	Spontaneous passivation of the CoCrFeMnNi high entropy alloy in sulfuric acid solution: The effects of alloyed nitrogen and dissolved oxygen. Corrosion Science, 2022, 196, 110016.	6.6	15
3	A Tribological and Ion Released Research of Ti-Materials for Medical Devices. Materials, 2022, 15, 131.	2.9	4
4	Recent insights in corrosion science from atomic spectroelectrochemistry. Electrochemical Science Advances, 2022, 2, .	2.8	7
5	Investigating the Role of Mo and Cr during the Activation and Passivation of Ni-Based Alloys in Acidic Chloride Solution. Journal of the Electrochemical Society, 2021, 168, 021509.	2.9	22
6	Potential Dependent Mn Oxidation and Its Role in Passivation of Ni ₃₈ Fe ₂₀ Cr ₂₂ Mn ₁₀ Co ₁₀ Multi-Principal Element Alloy Using Multi-Element Resolved Atomic Emission Spectroelectrochemistry. Journal of the Electrochemical Society, 2021, 168, 051508.	2.9	15
7	Transient stainless-steel dissolution and its consequences on ex-situ bipolar plate testing procedures. International Journal of Hydrogen Energy, 2020, 45, 984-995.	7.1	16
8	Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Co10: Unexpected high Cr enrichment within the passive film. Acta Materialia, 2020, 198, 121-133.	7.9	64
9	Zr-based conversion coating on Zn and Zn-Al-Mg alloy coating: Understanding the accelerating effect of Cu(II) and NO3â^'. Surface and Coatings Technology, 2020, 402, 126236.	4.8	17
10	The contribution of Cr and Mo to the passivation of Ni22Cr and Ni22Cr10Mo alloys in sulfuric acid. Corrosion Science, 2020, 176, 109015.	6.6	39
11	Refining anodic and cathodic dissolution mechanisms: combined AESEC-EIS applied to Al-Zn pure phase in alkaline solution. Npj Materials Degradation, 2020, 4, .	5.8	5
12	Communication—Dissolution and Passivation of a Ni-Cr-Fe-Ru-Mo-W High Entropy Alloy by Elementally Resolved Electrochemistry. Journal of the Electrochemical Society, 2020, 167, 061505.	2.9	18
13	Effect of added porosity on a novel porous Ti-Nb-Ta-Fe-Mn alloy exposed to simulated body fluid. Materials Science and Engineering C, 2020, 111, 110758.	7.3	13
14	Atomic Emission Spectroelectrochemistry: Real-Time Rate Measurements of Dissolution, Corrosion, and Passivation. Corrosion, 2019, 75, 1398-1419.	1.1	55
15	Silicon enrichment of an austenitic stainless steel – Impact on electrochemical behavior in concentrated nitric acid with oxidizing ions. Electrochimica Acta, 2019, 322, 134703.	5.2	14
16	Investigating ion release using inline ICP during in situ scratch testing of an Mg-Li(-Al-Y-Zr) alloy. Electrochemistry Communications, 2019, 99, 46-50.	4.7	24
17	The Passivation of Ni-Cr-Mo Alloys: Time Resolved Enrichment and Dissolution of Cr and Mo during Passive-Active Cycles. Journal of the Electrochemical Society, 2019, 166, C3179-C3185.	2.9	34
18	Communication—Hydrogen Evolution and Elemental Dissolution by Combined Gravimetric Method and Atomic Emission Spectroelectrochemistry. Journal of the Electrochemical Society, 2019, 166, C3068-C3070.	2.9	10

#	Article	lF	CITATIONS
19	Molybdenum surface enrichment and release during transpassive dissolution of Ni-based alloys. Corrosion Science, 2019, 147, 32-40.	6.6	55
20	Temperature Dependence of the Passivation and Dissolution of Al, Zn, and α-Phase Zn-68Al. Corrosion, 2019, 75, 69-79.	1.1	5
21	The anodic and cathodic dissolution of α-phase Zn-68Al in alkaline media. Corrosion Science, 2019, 148, 1-11.	6.6	12
22	Cathodic Dealloying of \hat{I}_{\pm} -Phase Al-Zn in Slightly Alkaline Chloride Electrolyte and Its Consequence for Corrosion Resistance. Journal of the Electrochemical Society, 2018, 165, C334-C342.	2.9	13
23	The kinetics of transpassive dissolution chemistry of stainless steels in nitric acid: The impact of Si. Electrochimica Acta, 2017, 258, 653-661.	5.2	26
24	Dissolution and Passivation of a Silicon-Rich Austenitic Stainless Steel during Active-Passive Cycles in Sulfuric and Nitric Acid. Journal of the Electrochemical Society, 2017, 164, C892-C900.	2.9	21
25	The effect of absorbed hydrogen on the dissolution of steel. Heliyon, 2016, 2, e00209.	3.2	33
26	On the effect of Fe concentration on Mg dissolution and activation studied using atomic emission spectroelectrochemistry and scanning electrochemical microscopy. Electrochimica Acta, 2016, 210, 271-284.	5.2	40
27	Amino Acid Interleaved Layered Double Hydroxides as Promising Hybrid Materials for AA2024 Corrosion Inhibition. European Journal of Inorganic Chemistry, 2016, 2016, 2006-2016.	2.0	33
28	The anodic dissolution of copper alloys: Pure copper in synthetic tap water. Electrochimica Acta, 2016, 191, 548-557.	5.2	27
29	Factors Affecting MoO ₄ ^{2–} Inhibitor Release from Zn ₂ Al Based Layered Double Hydroxide and Their Implication in Protecting Hot Dip Galvanized Steel by Means of Organic Coatings. ACS Applied Materials & Interfaces, 2015, 7, 25180-25192.	8.0	83
30	Observation of l-cysteine enhanced zinc dissolution during cathodic polarization and its consequences for corrosion rate measurements. Electrochimica Acta, 2015, 184, 203-213.	5.2	15
31	Influence of magnesium content on the corrosion resistance of the cut-edges of Zn–Mg-coated steel. Corrosion Science, 2015, 97, 100-106.	6.6	29
32	MoO42â^' as a soluble inhibitor for Zn in neutral and alkaline solutions. Corrosion Science, 2015, 99, 31-41.	6.6	32
33	A novel coupling of electrochemical impedance spectroscopy with atomic emission spectroelectrochemistry: Application to the open circuit dissolution of zinc. Electrochimica Acta, 2015, 168, 167-172.	5.2	14
34	The effects of l-cysteine on the inhibition and accelerated dissolution processes of zinc metal. Corrosion Science, 2015, 100, 101-112.	6.6	24
35	Revisiting the Electrochemical Impedance Spectroscopy of Magnesium with Online Inductively Coupled Plasma Atomic Emission Spectroscopy. ChemPhysChem, 2015, 16, 536-539.	2.1	78
36	Corrosion mechanisms of Zn(Mg,Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes. Corrosion Science, 2015, 90, 482-490.	6.6	94

#	Article	IF	CITATIONS
37	Mg Dissolution in Phosphate and Chloride Electrolytes: Insight into the Mechanism of the Negative Difference Effect. Corrosion, 2015, 71, 234-241.	1.1	57
38	Corrosion mechanisms of Zn(Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate. Corrosion Science, 2015, 90, 472-481.	6.6	89
39	Corrosion mechanisms of Zn(Mg,Al) coated steel: The effect of HCO3â^' and NH4+ ions on the intrinsic reactivity of the coating. Electrochimica Acta, 2015, 153, 159-169.	5.2	40
40	Dealloying of Al ₂ Cu, Al ₇ Cu ₂ Fe, and Al ₂ CuMg intermetallic phases to form nanoparticulate copper films. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 416-424.	1.5	48
41	The effect of synthetic zinc corrosion products on corrosion of electrogalvanized steel. II. Zinc reactivity and galvanic coupling zinc/steel in presence of zinc corrosion products. Corrosion Science, 2014, 83, 32-37.	6.6	38
42	Anticorrosion mechanisms of aluminized steel for hot stamping. Surface and Coatings Technology, 2014, 238, 188-196.	4.8	66
43	The effect of synthetic zinc corrosion products on corrosion of electrogalvanized steel: I. Cathodic reactivity under zinc corrosion products. Corrosion Science, 2014, 81, 11-20.	6.6	44
44	Adsorption and electroreduction of hematite particles on steel in strong alkaline media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440, 197-201.	4.7	12
45	Surface potential of hematite particles in high concentration electrolytes: Electroacoustic measurements and suspension stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 338-344.	4.7	9
46	On the cathodic dissolution of Al and Al alloys. Electrochimica Acta, 2014, 124, 9-16.	5.2	42
47	A novel approach to on-line measurement of gas evolution kinetics: Application to the negative difference effect of Mg in chloride solution. Electrochimica Acta, 2014, 124, 176-182.	5.2	98
48	The effect of an artificially synthesized simonkolleite layer on the corrosion of electrogalvanized steel. Corrosion Science, 2013, 70, 1-10.	6.6	50
49	The effect of pH on the selective dissolution of Zn and Al from Zn–Al coatings on steel. Corrosion Science, 2013, 67, 42-49.	6.6	67
50	On the Origin of the Second Anodic Peak During the Polarization of Stainless Steel in Sulfuric Acid. Corrosion, 2013, 69, 536-542.	1.1	8
51	Aqueous Corrosion of Mg-Al Binary Alloys: Roles of Al and Mg. Corrosion, 2012, 68, 557-570.	1.1	33
52	The initial release of zinc and aluminum from non-treated Galvalume and the formation of corrosion products in chloride containing media. Applied Surface Science, 2012, 258, 4351-4359.	6.1	35
53	The degradation of phosphate conversion coatings by electrochemically generated hydroxide. Corrosion Science, 2012, 55, 76-89.	6.6	29
54	Activation and inhibition of Zn–Al and Zn–Al–Mg coatings on steel by nitrate in phosphoric acid solution. Corrosion Science, 2012, 60, 256-264.	6.6	38

#	Article	IF	CITATIONS
55	Reliability of numerical models for simulating galvanic corrosion processes. Electrochimica Acta, 2012, 82, 349-355.	5.2	47
56	The anodic dissolution of zinc and zinc alloys in alkaline solution. II. Al and Zn partial dissolution from 5% Al–Zn coatings. Electrochimica Acta, 2012, 74, 130-138.	5.2	47
57	Atomic emission spectroelectrochemistry study of the degradation mechanism of model high-temperature paint containing sacrificial aluminum particles. Surface and Coatings Technology, 2012, 206, 2133-2139.	4.8	18
58	An atomic emission spectroelectrochemical study of passive film formation and dissolution on galvanized steel treated with silicate conversion coatings. Surface and Coatings Technology, 2012, 206, 3151-3157.	4.8	33
59	Modeling bimetallic corrosion under thin electrolyte films. Corrosion Science, 2011, 53, 201-207.	6.6	76
60	An atomic emission spectroelectrochemical study of corrosion inhibition: The effect of hexamethylenetetramine on the reaction of mild steel in HCl. Corrosion Science, 2011, 53, 1362-1368.	6.6	21
61	Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn–Al–Mg coatings on steel. Corrosion Science, 2011, 53, 2437-2445.	6.6	174
62	Protective mechanisms occurring on zinc coated steel cut-edges in immersion conditions. Electrochimica Acta, 2011, 56, 8347-8357.	5.2	69
63	Dissolution and passive film formation of Sn and Sn coated steel using atomic emission spectroelectrochemistry. Electrochimica Acta, 2011, 58, 322-329.	5.2	12
64	An SKP and EIS investigation of amine adsorption on zinc oxide surfaces. Surface and Interface Analysis, 2011, 43, 1286-1298.	1.8	13
65	The cathodic dissolution of Al, Al2Cu, and Al alloys. Electrochimica Acta, 2011, 56, 1711-1718.	5.2	52
66	Atomic emission spectroelectrochemical investigation of the anodization of AA7050T74 aluminum alloy. Electrochemistry Communications, 2011, 13, 42-45.	4.7	14
67	Atomic emission spectroelectrochemistry applied to dealloying phenomena II. Selective dissolution of iron and chromium during active–passive cycles of an austenitic stainless steel. Electrochimica Acta, 2010, 55, 913-921.	5.2	52
68	The anodic and cathodic dissolution of Al and Al–Cu–Mg alloy. Electrochimica Acta, 2010, 55, 3779-3786.	5.2	81
69	The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanized steel. Electrochimica Acta, 2010, 55, 7867-7875.	5.2	77
70	The Adsorption of Hematite Particles on Steel in Strongly Alkaline Electrolyte. Journal of the Electrochemical Society, 2010, 157, E24.	2.9	23
71	The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry. Corrosion Science, 2010, 52, 2372-2378.	6.6	112
72	Molecular modelling by DFT of 1,2-diaminoethane adsorbed on the Zn-terminated and O-terminated, anhydrous and hydroxylated ZnO (0001) surface. Superlattices and Microstructures, 2009, 46, 19-24.	3.1	20

#	Article	IF	CITATIONS
73	Atomic emission spectroelectrochemistry applied to dealloying phenomena: I. The formation and dissolution of residual copper films on stainless steel. Electrochimica Acta, 2009, 54, 5163-5170.	5.2	77
74	Understanding corrosion via corrosion product characterization: I. Case study of the role of Mg alloying in Zn–Mg coating on steel. Corrosion Science, 2009, 51, 1251-1262.	6.6	210
75	Investigations of Cut-edge Corrosion of Galvanized Steels by the Scanning Vibrating Electrode Technique. ECS Transactions, 2008, 11, 91-105.	0.5	19
76	Investigation of self-healing mechanism on galvanized steels cut edges by coupling SVET and numerical modeling. Electrochimica Acta, 2008, 53, 5226-5234.	5.2	122
77	Adsorption of 1,2-diaminoethane on ZnO thin films from p-xylene. Applied Surface Science, 2008, 254, 5530-5539.	6.1	31
78	Impedance characterization of the electrochemical environment under a polymer film artificially delaminated. Electrochimica Acta, 2008, 53, 6484-6488.	5.2	4
79	A Mathematical Model for Cathodic Delamination of Coated Metal Including a Kinetic pH–Porosity Relationship. Journal of the Electrochemical Society, 2008, 155, C279.	2.9	20
80	Predictive Model for Cut-Edge Corrosion of Galvanized Steels. ECS Transactions, 2007, 3, 343-353.	0.5	6
81	Mathematical model for cathodic delamination using a porosity–pH relationship. Corrosion Science, 2007, 49, 3638-3658.	6.6	25
82	The acid–base properties of the surface of native zinc oxide layers: An XPS study of adsorption of 1,2-diaminoethane. Applied Surface Science, 2007, 253, 6860-6867.	6.1	120
83	An electrochemical study of the delamination of polymer coatings on galvanized steel. Corrosion Science, 2005, 47, 2034-2052.	6.6	63
84	The alkaline stability of phosphate coatings I: ICP atomic emission spectroelectrochemistry. Corrosion Science, 2004, 46, 979-995.	6.6	93
85	The alkaline stability of phosphate coatings II: in situ Raman spectroscopy. Corrosion Science, 2004, 46, 997-1011.	6.6	57
86	Investigation of zinc chromatation. I. Application of QCM–ICP coupling. Electrochimica Acta, 2003, 48, 965-976.	5.2	24
87	Investigation of zinc chromatation. Electrochimica Acta, 2003, 48, 1483-1490.	5.2	23
88	Passivation of Fe–Cr alloys studied with ICP-AES and EQCM. Corrosion Science, 2002, 44, 1443-1456.	6.6	96
89	Anodic Dissolution of 304 Stainless Steel Using Atomic Emission Spectroelectrochemistry. Journal of the Electrochemical Society, 2000, 147, 1770.	2.9	131
90	Localized Electrochemical Methods Applied to Cut Edge Corrosion. Journal of the Electrochemical Society, 2000, 147, 3654.	2.9	142

#	Article	IF	CITATIONS
91	In Situ Monitoring of Phosphatation Reactions on Zn Using the Quartz Crystal Microbalance. Journal of the Electrochemical Society, 1994, 141, 2655-2658.	2.9	11
92	Isotope effects in water formation on Pt(111). Surface Science, 1986, 169, 425-437.	1.9	20
93	Hydrogen isotope exchange in alkylidynes on Pt(111). Surface Science, 1986, 165, 234-250.	1.9	25
94	The formation and decomposition kinetics of alkylidynes on Pt(111). Surface Science, 1986, 169, 246-266.	1.9	79
95	The low temperature water formation reaction on Pt(111): A static SIMS and TDS study. Surface Science, 1984, 139, 43-62.	1.9	100
96	Direct observation of hydrogen-deuterium exchange in ethylidyne adsorbed on Pt(111). Surface Science, 1984, 138, L137-L141.	1.9	31