
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3090979/publications.pdf Version: 2024-02-01

MADILISZ SOLKA

#	Article	IF	CITATIONS
1	Application of multivariate statistical techniques to evaluation of water quality in the MaÅ,a WeÅ,na River (Western Poland). Environmental Monitoring and Assessment, 2008, 147, 159-170.	2.7	56
2	Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk. Water (Switzerland), 2019, 11, 56.	2.7	55
3	Effect of Environmental Conditions and Morphometric Parameters on Surface Water Temperature in Polish Lakes. Water (Switzerland), 2018, 10, 580.	2.7	54
4	The application of GIS and 3D graphic software to visual impact assessment of wind turbines. Renewable Energy, 2016, 96, 625-635.	8.9	49
5	Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. Catena, 2022, 211, 105959.	5.0	38
6	Application of multivariate statistical approach to identify trace elements sources in surface waters: a case study of Kowalskie and Stare Miasto reservoirs, Poland. Environmental Monitoring and Assessment, 2017, 189, 364.	2.7	34
7	Analysis of Spatial Variability of River Bottom Sediment Pollution with Heavy Metals and Assessment of Potential Ecological Hazard for the Warta River, Poland. Minerals (Basel, Switzerland), 2021, 11, 327.	2.0	32
8	Applying a Modified DRASTIC Model to Assess Groundwater Vulnerability to Pollution: A Case Study in Central Poland. Polish Journal of Environmental Studies, 2019, 28, 1223-1231.	1.2	31
9	Ground volume assessment using 'Structure from Motion' photogrammetry with a smartphone and a compact camera. Open Geosciences, 2017, 9, .	1.7	29
10	Heavy Metal Transport in a River-Reservoir System: a Case Study from Central Poland. Polish Journal of Environmental Studies, 2018, 27, 1725-1734.	1.2	28
11	Possibilities of Using Low Quality Digital Elevation Models of Floodplains in Hydraulic Numerical Models. Water (Switzerland), 2017, 9, 283.	2.7	27
12	Estimation of Polder Retention Capacity Based on ASTER, SRTM and LIDAR DEMs: The Case of Majdany Polder (West Poland). Water (Switzerland), 2016, 8, 230.	2.7	24
13	The Effect of Climate Change on Controlled Drainage Effectiveness in the Context of Groundwater Dynamics, Surface, and Drainage Outflows. Central-Western Poland Case Study. Agronomy, 2020, 10, 625.	3.0	24
14	Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow. Sustainability, 2019, 11, 4201.	3.2	23
15	Long-term water temperature trends of the Warta River in the years 1960–2009. Ecohydrology and Hydrobiology, 2019, 19, 441-451.	2.3	22
16	Causes of variations of trace and rare earth elements concentration in lakes bottom sediments in the Bory Tucholskie National Park, Poland. Scientific Reports, 2021, 11, 244.	3.3	20
17	Hyplant-Derived Sun-Induced Fluorescence—A New Opportunity to Disentangle Complex Vegetation Signals from Diverse Vegetation Types. Remote Sensing, 2019, 11, 1691.	4.0	18
18	On thinning ice: Effects of atmospheric warming, changes in wind speed and rainfall on ice conditions in temperate lakes (Northern Poland). Journal of Hydrology, 2021, 597, 125724.	5.4	18

#	Article	IF	CITATIONS
19	Warming of lowland Polish lakes under future climate change scenarios and consequences for ice cover and mixing dynamics. Journal of Hydrology: Regional Studies, 2021, 34, 100780.	2.4	18
20	Distribution of heavy metals in the MaÅ,a WeÅ,na River system (western Poland). Oceanological and Hydrobiological Studies, 2009, 38, 51-61.	0.7	17
21	Quantitative Landscape Assessment Using LiDAR and Rendered 360° Panoramic Images. Remote Sensing, 2020, 12, 386.	4.0	16
22	Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland – Lake Åšniardwy. Journal of Hydrology and Hydromechanics, 2020, 68, 260-270.	2.0	16
23	The increasing of maximum lake water temperature in lowland lakes of central Europe: case study of the Polish Lakeland. Annales De Limnologie, 2019, 55, 6.	0.6	15
24	Assessing Spectral Indices for Detecting Vegetative Overgrowth of Reservoirs. Polish Journal of Environmental Studies, 2019, 28, 4199-4211.	1.2	15
25	Warming Vistula River – the effects of climate and local conditions on water temperature in one of the largest rivers in Europe. Journal of Hydrology and Hydromechanics, 2022, 70, 1-11.	2.0	14
26	The hydropower sector in Poland: Historical development and current status. Renewable and Sustainable Energy Reviews, 2022, 158, 112150.	16.4	14
27	Modeling of River Channel Shading as a Factor for Changes in Hydromorphological Conditions of Small Lowland Rivers. Water (Switzerland), 2020, 12, 527.	2.7	12
28	Analysis of extreme flow uncertainty impact on size of flood hazard zones for the Wronki gauge station in the Warta river. Acta Geophysica, 2019, 67, 661-676.	2.0	11
29	The Variability of Lake Water Chemistry in the Bory Tucholskie National Park (Northern Poland). Water (Switzerland), 2020, 12, 394.	2.7	11
30	The hydropower sector in Poland: Barriers and the outlook for the future. Renewable and Sustainable Energy Reviews, 2022, 163, 112500.	16.4	11
31	Principles of hydromorphological surveys of Polish rivers. Journal of Water and Land Development, 2010, 14, .	0.9	10
32	Directions and Extent of Flows Changes in Warta River Basin (Poland) in the Context of the Efficiency of Run-of-River Hydropower Plants and the Perspectives for Their Future Development. Energies, 2022, 15, 439.	3.1	10
33	Least square support vector machine-based variational mode decomposition: a new hybrid model for daily river water temperature modeling. Environmental Science and Pollution Research, 2022, 29, 71555-71582.	5.3	10
34	Assessment of dam construction impact on hydrological regime changes in lowland river – A case of study: the Stare Miasto reservoir located on the Powa River. Journal of Water and Land Development, 2016, 30, 119-125.	0.9	9
35	ANALYSIS OF SELECTED RESERVOIRS FUNCTIONING IN THE WIELKOPOLSKA REGION. Acta Scientiarum Polonorum Formatio Circumiectus, 2017, 4, 205-215.	0.6	9
36	Application of Terrestrial Laser Scanning to Tree Trunk Bark Structure Characteristics Evaluation and Analysis of Their Effect on the Flow Resistance Coefficient. Water (Switzerland), 2018, 10, 753.	2.7	8

#	Article	IF	CITATIONS
37	The disappearance of ice cover on temperate lakes (Central Europe) as a result of climate warming. Geographical Journal, 2021, 187, 200-213.	3.1	8
38	CHANGES IN ICE REGIME OF JAGODNE LAKE (NORTH-EASTERN POLAND). Acta Scientiarum Polonorum Formatio Circumiectus, 2019, 18, 89-100.	0.6	8
39	APPLICATION OF SENTINEL-2 SATELLITE IMAGERY TO ASSESSMENT OF SPATIO-TEMPORAL CHANGES IN THE RESERVOIR OVERGROWTH PROCESS - A CASE STUDY: PRZEBÄ~DOWO, WEST POLAND. Carpathian Journal of Earth and Environmental Sciences, 2019, 14, 39-50.	0.4	8
40	Assessment of the Impact of New Investments on Flood Hazard-Study Case: The Bridge on the Warta River near Wronki. Water (Switzerland), 2015, 7, 5752-5767.	2.7	7
41	Ecological quality classes of river hydromorphology in Poland. Journal of Water and Land Development, 2010, 14, .	0.9	6
42	THE IMPACT OF THE KOWALSKIE RESERVOIR ON THE HYDROLOGICAL REGIME ALTERATION OF THE GÅÓWNA RIVER. Journal of Ecological Engineering, 2016, 17, 91-98.	1.1	6
43	Changes in the Water Resources of Selected Lakes in Poland in the Period 1916–2020 as Information to Increase Their Availability. Sustainability, 2021, 13, 7298.	3.2	5
44	Concentration of Rare Earth Elements in surface water and bottom sediments in Lake WadÄg, Poland. Journal of Elementology, 2018, , .	0.2	5
45	Application of Multi-Criteria Analytic Methods in the Assessment of the Technical Conditions of Small Hydraulic Structures. Buildings, 2022, 12, 115.	3.1	5
46	Characteristics of daily water temperature fluctuations in lake kierskie (West Poland). Quaestiones Geographicae, 2019, 38, 41-49.	1.1	4
47	Drought Risk Assessment in the Kopel River Basin. Journal of Ecological Engineering, 2017, 18, 134-141.	1.1	3
48	THE EVALUATION OF NUTRIENTS CONCENTRATIONS VARIABILITY IN THE NER RIVER. Inżynieria Ekologiczna, 2016, , 31-37.	0.2	3
49	A hybrid model for the forecasting of sea surface water temperature using the information of air temperature: a case study of the Baltic Sea. All Earth, 2022, 34, 27-38.	2.1	3
50	Hydraulic Structures as a Key Component of Sustainable Water Management at the Catchment Scale—Case Study of the Rgilewka River (Central Poland). Buildings, 2022, 12, 675.	3.1	3
51	LiDAR based urban vegetation mapping as a basis of green infrastructure planning. E3S Web of Conferences, 2020, 171, 02008.	0.5	2
52	Different responses to climate change of the hydrological regime of Lake Hańcza, the deepest lake in the Central European Plain. Hydrological Sciences Journal, 2021, 66, 1083-1095.	2.6	2
53	TREND OF CHANGES IN PHYSICOCHEMICAL STATE OF THE RIVER NER. Journal of Ecological Engineering, 2016, 17, 27-34.	1.1	2
54	Trace Elements in Surface Water and Bottom Sediments in the Hyporheic Zone of Lake WadÄg, Poland. Polish Journal of Environmental Studies, 2020, 29, 2327-2337.	1.2	2

#	Article	IF	CITATIONS
55	ANALYSIS OF TRENDS CHANGES IN PHYSICOCHEMICAL STATE OF THE GÅÓWNA RIVER. Inżynieria Ekologiczna 2015, 44, 154-161.	'0 . 2	2
56	ANALYSIS OF HEAVY METALS CONTAMINATION IN BOTTOM SEDIMENTS OF LAKES LOCATED IN THE GNIEZNO LAKELAND. Acta Scientiarum Polonorum Formatio Circumiectus, 2019, 18, 137-149.	0.6	2
57	Application of 3D graphic software and CIS in visual impact assessment of high-voltage overhead transmission lines. E3S Web of Conferences, 2020, 171, 02010.	0.5	1
58	Assessment of vulnerability to degradation of the Przebędowo reservoir. Inżynieria Ekologiczna, 2017, 18, 118-125.	0.2	1
59	Analysis of the use of selected reservoirs in the Wielkopolska province. Annals of Warsaw University of Life Sciences, Land Reclamation, 2018, 50, 373-385.	0.2	1
60	APPLICATION OF REMOTE SENSING AND GIS TO WATER TRANSPARENCY ESTIMATION IN RESERVOIRS. Carpathian Journal of Earth and Environmental Sciences, 2019, 14, 353-366.	0.4	1
61	Trace Elements in Sediments of Rivers Affected by Brown Coal Mining: A Potential Environmental Hazard. Energies, 2022, 15, 2828.	3.1	1
62	Detection of lake shoreline active zones and water volume changes using digital lake bottom model and water level fluctuations. Geocarto International, 0, , 1-21.	3.5	1
63	Visual impact assessment of river regulation structures. E3S Web of Conferences, 2020, 171, 02015.	0.5	0
64	SIMULATION OF SEDIMENT TRANSPORT IN THE JEZIORO KOWALSKIE RESERVOIR LOCATED IN THE GLOWNA RIVER. Inżynieria Ekologiczna, 2015, 43, 131-138.	0.2	0
65	WYZNACZENIE PRZEPÅ¥WU BRZEGOWEGO NA WYBRANYM ODCINKU RZEKI POWY. Acta Scientiarum Polonorum Formatio Circumiectus, 2016, 15, 383-394.	0.6	0
66	CHANGES IN PROSNA WATER LEVELS (BOGUSÅAW PROFILE) IN 1973-2017. Zeszyty Naukowe Uniwersytetu Zielonogórskiego / inżynieria Środowiska, 2018, 171, 47-59.	0.0	0
67	ANALYSIS OF DEGRADATION PROCESSES IN RESERVOIRS BASED ON REMOTE SENSING DATA. Acta Scientiarum Polonorum Formatio Circumiectus, 2019, 2, 23-37.	0.6	0
68	ANALYSIS OF DEGRADATION PROCESSES IN RESERVOIRS BASED ON REMOTE SENSING DATA. Acta Scientiarum Polonorum Formatio Circumiectus, 2019, 2, 23-37.	0.6	0