Philip Owens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3090922/publications.pdf

Version: 2024-02-01

257450 302126 2,287 43 24 39 h-index citations g-index papers 43 43 43 4738 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Neoadjuvant endocrine therapy expands stromal populations that predict poor prognosis in estrogen receptorâ€positive breast cancer. Molecular Carcinogenesis, 2022, 61, 359-371.	2.7	2
2	Cover Image, Volume 61, Issue 3. Molecular Carcinogenesis, 2022, 61, .	2.7	O
3	miR-31 Displays Subtype Specificity in Lung Cancer. Cancer Research, 2021, 81, 1942-1953.	0.9	11
4	Adenosine/TGFÎ ² axis in regulation of mammary fibroblast functions. PLoS ONE, 2021, 16, e0252424.	2.5	9
5	Abstract 114: Loss of BMPR1a in fibroblasts restricts breast cancer progression and alters the immune tumor microenvironment., 2021,,.		1
6	Mechanobiology of Bone Metastatic Cancer. Current Osteoporosis Reports, 2021, 19, 580-591.	3.6	6
7	Targeting the BMP Pathway in Prostate Cancer Induced Bone Disease. Frontiers in Endocrinology, 2021, 12, 769316.	3.5	7
8	Integrating the immune microenvironment of prostate cancerÂinduced bone disease. Molecular Carcinogenesis, 2020, 59, 822-829.	2.7	9
9	Loss of Myeloid BMPR1a Alters Differentiation and Reduces Mouse Prostate Cancer Growth. Frontiers in Oncology, 2020, 10, 357.	2.8	11
10	Myeloid Cell–Derived TGFβ Signaling Regulates ECM Deposition in Mammary Carcinoma via Adenosine-Dependent Mechanisms. Cancer Research, 2020, 80, 2628-2638.	0.9	28
11	Distinct tumor microenvironments of lytic and blastic bone metastases in prostate cancer patients., 2019, 7, 293.		45
12	Pancreatic Tumor Microenvironment Modulation by EphB4-ephrinB2 Inhibition and Radiation Combination. Clinical Cancer Research, 2019, 25, 3352-3365.	7.0	18
13	Cytokine sensitivity screening highlights BMP4 pathway signaling as a therapeutic opportunity in ER + breast cancer. FASEB Journal, 2019, 33, 1644-1657.	0.5	13
14	Therapeutically targeting tumor microenvironment–mediated drug resistance in estrogen receptor–positive breast cancer. Journal of Experimental Medicine, 2018, 215, 895-910.	8.5	63
15	TGF- \hat{l}^2 , Bone Morphogenetic Protein, and Activin Signaling and the Tumor Microenvironment. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022285.	5.5	47
16	The Yin/Yan of CCL2: a minor role in neutrophil anti-tumor activity in vitro but a major role on the outgrowth of metastatic breast cancer lesions in the lung in vivo. BMC Cancer, 2017, 17, 88.	2.6	29
17	HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2. Clinical Cancer Research, 2017, 23, 4323-4334.	7.0	64
18	Development of Aggressive Pancreatic Ductal Adenocarcinomas Depends on Granulocyte Colony Stimulating Factor Secretion in Carcinoma Cells. Cancer Immunology Research, 2017, 5, 718-729.	3.4	41

#	Article	IF	Citations
19	ErbB3 drives mammary epithelial survival and differentiation during pregnancy and lactation. Breast Cancer Research, 2017, 19, 105.	5.0	23
20	TβRIII Expression in Human Breast Cancer Stroma and the Role of Soluble TβRIII in Breast Cancer Associated Fibroblasts. Cancers, 2016, 8, 100.	3.7	9
21	Emerging roles of the bone morphogenetic protein pathway in cancer: potential therapeutic target for kinase inhibition. Biochemical Society Transactions, 2016, 44, 1117-1134.	3.4	40
22	The Bone Microenvironment: a Fertile Soil for Tumor Growth. Current Osteoporosis Reports, 2016, 14, 151-158.	3.6	52
23	Bone morphogenetic protein signaling promotes tumorigenesis in a murine model of high-grade glioma. Neuro-Oncology, 2016, 18, 928-938.	1.2	27
24	Deletion of the BMP receptor BMPR1a impairs mammary tumor formation and metastasis. Oncotarget, 2015, 6, 22890-22904.	1.8	37
25	Genomic Analysis of the BMP Family in Glioblastomas. Translational Oncogenomics, 2015, 7, 1-9.	1.7	12
26	BMPR2 loss in fibroblasts promotes mammary carcinoma metastasis via increased inflammation. Molecular Oncology, 2015, 9, 179-191.	4.6	30
27	Small molecule inhibitor of the bone morphogenetic protein pathway DMH1 reduces ovarian cancer cell growth. Cancer Letters, 2015, 368, 79-87.	7.2	32
28	$TGF\hat{I}^2$ Signaling in Myeloid Cells Regulates Mammary Carcinoma Cell Invasion through Fibroblast Interactions. PLoS ONE, 2015, 10, e0117908.	2.5	17
29	Molecular Profiling of the Residual Disease of Triple-Negative Breast Cancers after Neoadjuvant Chemotherapy Identifies Actionable Therapeutic Targets. Cancer Discovery, 2014, 4, 232-245.	9.4	413
30	Attenuated transforming growth factor beta signaling promotes metastasis in a model of HER2 mammary carcinogenesis. Breast Cancer Research, 2014, 16, 425.	5.0	20
31	Role of TGF-Î ² Signaling in Generation of CD39+CD73+ Myeloid Cells in Tumors. Journal of Immunology, 2014, 193, 3155-3164.	0.8	101
32	Stromally Derived Lysyl Oxidase Promotes Metastasis of Transforming Growth Factor-β–Deficient Mouse Mammary Carcinomas. Cancer Research, 2013, 73, 5336-5346.	0.9	164
33	Bone Morphogenetic Proteins Stimulate Mammary Fibroblasts to Promote Mammary Carcinoma Cell Invasion. PLoS ONE, 2013, 8, e67533.	2.5	42
34	Disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2814-2819.	7.1	81
35	Deletion of TGF- \hat{l}^2 signaling in myeloid cells enhances their anti-tumorigenic properties. Journal of Leukocyte Biology, 2012, 92, 641-651.	3.3	63
36	TGF- \hat{l}^2 Receptor II Loss Promotes Mammary Carcinoma Progression by Th17-Dependent Mechanisms. Cancer Discovery, 2011, 1, 430-441.	9.4	116

#	Article	IF	CITATION
37	Epidermal Smad4 Deletion Results in Aberrant Wound Healing. American Journal of Pathology, 2010, 176, 122-133.	3.8	44
38	The Role of Smads in Skin Development. Journal of Investigative Dermatology, 2008, 128, 783-790.	0.7	56
39	Smad4-dependent desmoglein-4 expression contributes to hair follicle integrity. Developmental Biology, 2008, 322, 156-166.	2.0	33
40	IKKÎ \pm is a critical coregulator of a Smad4-independent TGFÎ 2 -Smad2/3 signaling pathway that controls keratinocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2487-2492.	7.1	138
41	Smad7-Induced \hat{I}^2 -Catenin Degradation Alters Epidermal Appendage Development. Developmental Cell, 2006, 11, 301-312.	7.0	144
42	Role of $TGF\hat{1}^2$ -Mediated Inflammation in Cutaneous Wound Healing. Journal of Investigative Dermatology Symposium Proceedings, 2006, 11, 112-117.	0.8	189
43	039â€ ⁻ Constitutive TGFβ1 Overexpression in Mouse Keratinocytes Delays Cutaneous Wound Healing. Wound Repair and Regeneration, 2005, 13, A4-A27.	3.0	O