Emiliano Spezi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3090899/publications.pdf

Version: 2024-02-01

151 papers 4,484 citations

147801 31 h-index 64 g-index

157 all docs

157 docs citations

157 times ranked

5440 citing authors

#	Article	IF	CITATIONS
1	The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020, 295, 328-338.	7.3	1,869
2	Characterization of a 2D ion chamber array for the verification of radiotherapy treatments. Physics in Medicine and Biology, 2005, 50, 3361-3373.	3.0	171
3	Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211. Medical Physics, 2017, 44, e1-e42.	3.0	162
4	Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Medical Physics, 2018, 45, 3713-3720.	3.0	114
5	Imaging dose from cone beam computed tomography in radiation therapy. Physica Medica, 2015, 31, 647-658.	0.7	111
6	Distributed learning on 20 000+ lung cancer patients – The Personal Health Train. Radiotherapy and Oncology, 2020, 144, 189-200.	0.6	97
7	Combined 18F-FDG-PET/CT Imaging in Radiotherapy Target Delineation for Head-and-Neck Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 73, 759-763.	0.8	94
8	Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations: a multi-centre study. Physics in Medicine and Biology, 2007, 52, 539-562.	3.0	91
9	Creating a data exchange strategy for radiotherapy research: Towards federated databases and anonymised public datasets. Radiotherapy and Oncology, 2014, 113, 303-309.	0.6	79
10	Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force. EJNMMI Physics, 2017, 4, 27.	2.7	71
11	Monte Carlo simulation and patient dosimetry for a kilovoltage coneâ€beam CT unit. Medical Physics, 2009, 36, 4156-4167.	3.0	67
12	Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey. EJNMMI Physics, 2017, 4, 28.	2.7	65
13	A DICOM-RT-based toolbox for the evaluation and verification of radiotherapy plans. Physics in Medicine and Biology, 2002, 47, 4223-4232.	3.0	61
14	Patient-Specific Three-Dimensional Concomitant Dose From Cone Beam Computed Tomography Exposure in Image-Guided Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2012, 83, 419-426.	0.8	59
15	Development and validation of RAYDOSE: a Geant4-based application for molecular radiotherapy. Physics in Medicine and Biology, 2013, 58, 2491-2508.	3.0	52
16	Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer. European Radiology, 2018, 28, 428-436.	4.5	52
17	Assessing radiomic feature robustness to interpolation in 18F-FDG PET imaging. Scientific Reports, 2019, 9, 9649.	3.3	52
18	Gamma histograms for radiotherapy plan evaluation. Radiotherapy and Oncology, 2006, 79, 224-230.	0.6	47

#	Article	IF	Citations
19	Monte Carlo simulation of an xâ€ray volume imaging cone beam CT unit. Medical Physics, 2009, 36, 127-136.	3.0	46
20	Improving radiotherapy quality assurance in clinical trials: assessment of target volume delineation of the pre-accrual benchmark case. British Journal of Radiology, 2013, 86, 20120398.	2.2	42
21	ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography. Physics in Medicine and Biology, 2016, 61, 4855-4869.	3.0	41
22	Head and neck target delineation using a novel PET automatic segmentation algorithm. Radiotherapy and Oncology, 2017, 122, 242-247.	0.6	41
23	An overview of Monte Carlo treatment planning for radiotherapy. Radiation Protection Dosimetry, 2008, 131, 123-129.	0.8	39
24	Optimization of accelerator target and detector for portal imaging using Monte Carlo simulation and experiment. Physics in Medicine and Biology, 2002, 47, 3331-3349.	3.0	36
25	Full forward Monte Carlo calculation of portal dose from MLC collimated treatment beams. Physics in Medicine and Biology, 2002, 47, 377-390.	3.0	35
26	Toward a standard for the evaluation of <scp>PET</scp> â€Autoâ€Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation. Medical Physics, 2017, 44, 4098-4111.	3.0	35
27	Dosimetric Characteristics of the Siemens IGRT Carbon Fiber Tabletop. Medical Dosimetry, 2007, 32, 295-298.	0.9	34
28	Imaging for Target Volume Delineation in Rectal Cancer Radiotherapy â€" A Systematic Review. Clinical Oncology, 2012, 24, 52-63.	1.4	34
29	Evaluating the influence of the Siemens IGRT carbon fibre tabletop in head and neck IMRT. Radiotherapy and Oncology, 2008, 89, 114-122.	0.6	33
30	Influence of cold walls on PET image quantification and volume segmentation: A phantom study. Medical Physics, 2013, 40, 082505.	3.0	32
31	Monte Carlo simulation and dosimetric verification of radiotherapy beam modifiers. Physics in Medicine and Biology, 2001, 46, 3007-3029.	3.0	29
32	Toward Semi-automated Assessment of Target Volume Delineation in Radiotherapy Trials: The SCOPE 1 Pretrial Test Case. International Journal of Radiation Oncology Biology Physics, 2012, 84, 1037-1042.	0.8	28
33	Pretherapeutic Dosimetry in Patients Affected by Metastatic Thyroid Cancer Using 124I PET/CT Sequential Scans for 131I Treatment Planning. Clinical Nuclear Medicine, 2014, 39, e367-e374.	1.3	28
34	PETSTEP: Generation of synthetic PET lesions for fast evaluation of segmentation methods. Physica Medica, 2015, 31, 969-980.	0.7	28
35	Phantom validation of quantitative Y-90 PET/CT-based dosimetry in liver radioembolization. EJNMMI Research, 2017, 7, 94.	2.5	28
36	Commissioning kilovoltage coneâ€beam CT beams in a radiation therapy treatment planning system. Journal of Applied Clinical Medical Physics, 2012, 13, 19-33.	1.9	25

#	Article	IF	CITATIONS
37	Oesophageal Chemoradiotherapy in the UKâ€"Current Practice and Future Directions. Clinical Oncology, 2013, 25, 368-377.	1.4	24
38	Dose calculation and treatment plan optimization including imaging dose from kilovoltage cone beam computed tomography. Acta Oncol \tilde{A}^3 gica, 2014, 53, 839-844.	1.8	23
39	Comparison of investigator-delineated gross tumour volumes and quality assurance in pancreatic cancer: Analysis of the on-trial cases for the SCALOP trial. Radiotherapy and Oncology, 2016, 120, 212-216.	0.6	23
40	Assessment of contour variability in target volumes and organs at risk in lung cancer radiotherapy. Technical Innovations and Patient Support in Radiation Oncology, 2019, 10, 8-12.	1.9	23
41	Comparison of investigator-delineated gross tumor volumes and quality assurance in pancreatic cancer: Analysis of the pretrial benchmark case for the SCALOP trial. Radiotherapy and Oncology, 2015, 117, 432-437.	0.6	22
42	External validation of a prognostic model incorporating quantitative PET image features in oesophageal cancer. Radiotherapy and Oncology, 2019, 133, 205-212.	0.6	21
43	From multisource data to clinical decision aids in radiation oncology: The need for a clinical data science community. Radiotherapy and Oncology, 2020, 153, 43-54.	0.6	20
44	Training and validation of a robust PET radiomic-based index to predict distant-relapse-free-survival after radio-chemotherapy for locally advanced pancreatic cancer. Radiotherapy and Oncology, 2020, 153, 258-264.	0.6	19
45	Characterization of an orthovoltage biological irradiator used for radiobiological research. Journal of Radiation Research, 2015, 56, 485-492.	1.6	18
46	Prediction of Early Distant Recurrence in Upfront Resectable Pancreatic Adenocarcinoma: A Multidisciplinary, Machine Learning-Based Approach. Cancers, 2021, 13, 4938.	3.7	16
47	Evaluation of advanced automatic PET segmentation methods using nonspherical thinâ€wall inserts. Medical Physics, 2014, 41, 022502.	3.0	15
48	Monte Carlo simulation of portal dosimetry on a rectilinear voxel geometry: a variable gantry angle solution. Physics in Medicine and Biology, 2003, 48, N231-N238.	3.0	14
49	Correction for dose-response variations in a scanning liquid ion chamber EPID as a function of linac gantry angle. Physics in Medicine and Biology, 2004, 49, N93-N103.	3.0	14
50	A virtual source model for Kiloâ€voltage cone beam CT: Source characteristics and model validation. Medical Physics, 2011, 38, 5254-5263.	3.0	14
51	Partial volume effect of SPECT images in PRRT with 177Lu labelled somatostatin analogues: A practical solution. Physica Medica, 2019, 57, 153-159.	0.7	14
52	A Multiple acquisition sequence for IMRT verification with a 2D ion chamber array. Medical Dosimetry, 2006, 31, 269-272.	0.9	13
53	A novel phantom technique for evaluating the performance of PET auto-segmentation methods in delineating heterogeneous and irregular lesions. EJNMMI Physics, 2015, 2, 13.	2.7	13
54	Design and characterization of tissueâ€mimicking gel phantoms for diffusion kurtosis imaging. Medical Physics, 2018, 45, 2476-2485.	3.0	13

#	Article	IF	CITATIONS
55	Prediction of lymph node metastases using pre-treatment PET radiomics of the primary tumour in esophageal adenocarcinoma: an external validation study. British Journal of Radiology, 2021, 94, 20201042.	2.2	13
56	Artificial intelligence in radiation oncology: A review of its current status and potential application for the radiotherapy workforce. Radiography, 2021, 27, S63-S68.	2.1	12
57	High-performance computing for Monte Carlo radiotherapy calculations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 2607-2617.	3.4	11
58	Discovery of stable and prognostic CT-based radiomic features independent of contrast administration and dimensionality in oesophageal cancer. PLoS ONE, 2019, 14, e0225550.	2.5	11
59	External Validation of Radiation-Induced Dyspnea Models on Esophageal Cancer Radiotherapy Patients. Frontiers in Oncology, 2019, 9, 1411.	2.8	10
60	Superiority of Deformable Image Co-registration in the Integration of Diagnostic Positron Emission Tomography-Computed Tomography to the Radiotherapy Treatment Planning Pathway for Oesophageal Carcinoma. Clinical Oncology, 2016, 28, 655-662.	1.4	9
61	Prospective review of radiotherapy trials through implementation of standardized multicentre workflow and IT infrastructure. British Journal of Radiology, 2016, 89, 20160020.	2.2	9
62	Evaluation of prognostic models developed using standardised image features from different PET automated segmentation methods. EJNMMI Research, 2018, 8, 29.	2.5	9
63	Comparison of different calculation techniques for absorbed dose assessment in patient specific peptide receptor radionuclide therapy. PLoS ONE, 2020, 15, e0236466.	2.5	9
64	Monte Carlo characterization of materials for prosthetic implants and dosimetric validation of Pinnacle3 TPS. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 5001-5006.	1.4	8
65	Effect of image registration on 3D absorbed dose calculations in 177 Lu-DOTATOC peptide receptor radionuclide therapy. Physica Medica, 2018, 45, 177-185.	0.7	7
66	An investigation of the accuracy of Monte Carlo portal dosimetry for verification of IMRT with extended fields. Physics in Medicine and Biology, 2010, 55, 4589-4600.	3.0	6
67	Evaluating the application of Pareto navigation guided automated radiotherapy treatment planning to prostate cancer. Radiotherapy and Oncology, 2019, 141, 220-226.	0.6	6
68	Utilisation of Pareto navigation techniques to calibrate a fully automated radiotherapy treatment planning solution. Physics and Imaging in Radiation Oncology, 2019, 10, 41-48.	2.9	6
69	Using deep machine learning to detect esophageal lesions in PET-CT scans. , 2019, , .		6
70	Characterization of materials for prosthetic implants using the BEAMnrc Monte Carlo code. Journal of Physics: Conference Series, 2007, 74, 021016.	0.4	5
71	Simulating oblique incident irradiation using the BEAMnrc Monte Carlo code. Physics in Medicine and Biology, 2009, 54, N93-N100.	3.0	5
72	The influence of dose distribution on treatment outcome in the SCOPE 1 oesophageal cancer trial. Radiation Oncology, 2016, 11, 19.	2.7	5

#	Article	IF	Citations
73	Machine-learned target volume delineation of 18F-FDG PET images after one cycle of induction chemotherapy. Physica Medica, 2019, 61, 85-93.	0.7	5
74	The effect of dose escalation on gastric toxicity when treating lower oesophageal tumours: a radiobiological investigation. Radiation Oncology, 2015, 10, 236.	2.7	4
75	Cyclo-oxygenase-2 expression is associated with mean standardised uptake value on 18F-Fluorodeoxyglucose positron emission tomography in oesophageal adenocarcinoma. British Journal of Radiology, 2019, 92, 20180668.	2.2	4
76	SU-E-J-08: Assessing and Minimizing the Dose From KV Cone Beam CT to Pediatric Patients Undergoing Radiation Therapy. Medical Physics, 2013, 40, 151-151.	3.0	4
77	Monte Carlo simulation of the SIEMENS IGRT carbon fibre tabletop. Journal of Physics: Conference Series, 2007, 74, 021017.	0.4	3
78	A distributed simulation framework for conformal radiotherapy. Parallel and Distributed Processing Symposium (IPDPS), Proceedings of the International Conference on, 2008, , .	1.0	3
79	Inter-observer Variation in Outlining of Pre-trial Test Case in the SCOPE1 Trial: A United Kingdom Definitive Chemoradiotherapy Trial for Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2011, 81, S67-S68.	0.8	3
80	The Statistical Influence of Imaging Time and Segmentation Volume on PET Radiomic Features: A Preclinical Study. , 2019, , .		3
81	Use of knowledge based DVH predictions to enhance automated re-planning strategies in head and neck adaptive radiotherapy. Physics in Medicine and Biology, 2021, 66, 135004.	3.0	3
82	Optimization of zirconium-89 production in IBA Cyclone $18/9$ cyclotron with COSTIS solid target system. AIP Conference Proceedings, $2017, \ldots$	0.4	2
83	Can Deep Learning Detect Esophageal Lesions In PET-CT Scans?., 2019, , .		2
84	FIELD ^{RT} : an open-source platform for the assessment of target volume delineation in radiation therapy. British Journal of Radiology, 2021, 94, 20210356.	2.2	2
85	Special section: Selected papers from the Third European Workshop on Monte Carlo Treatment Planning (MCTP2012). Physics in Medicine and Biology, 2013, 58, E01.	3.0	1
86	Esophageal Delineation - Lessons Learned From Pre-Accrual Benchmark Cases in the UK NeoSCOPE Esophageal Trial. International Journal of Radiation Oncology Biology Physics, 2014, 90, S10.	0.8	1
87	OC-0265: Evaluating variability of contouring using ESTRO guidelines for elective breast cancer radiotherapy. Radiotherapy and Oncology, 2017, 123, S136-S137.	0.6	1
88	EP-1333: Impact of 18 F-Choline PET scan acquisition time on delineation of GTV in Prostate cancer. Radiotherapy and Oncology, 2017, 123, S714-S715.	0.6	1
89	EP-1711: Effect of Noise Floor Suppression on Diffusion Kurtosis for Prostate Brachytherapy. Radiotherapy and Oncology, 2017, 123, S938.	0.6	1
90	EP-1126: Target volume delineation of PET post one cycle of induction chemotherapy in oropharyngeal cancer. Radiotherapy and Oncology, 2018, 127, S634-S635.	0.6	1

#	Article	IF	CITATIONS
91	EP-2117: Effect of Interpolation on 3D Texture Analysis of PET Imaging in Oesophageal Cancer. Radiotherapy and Oncology, 2018, 127, S1164-S1165.	0.6	1
92	Interim 18F-FDG Positron Emission Tomography/Computed Tomography During Chemoradiotherapy in the Management of Cancer Patients: a Response. Clinical Oncology, 2019, 31, 669-670.	1.4	1
93	EP-1666 ARENA: Improving training in target volume delineation for radiotherapy. Radiotherapy and Oncology, 2019, 133, S896-S897.	0.6	1
94	Imaging Dose in Radiation Therapy. , 2017, , 553-580.		1
95	Variations in Head and Neck Treatment Plan Quality Assessment Among Radiation Oncologists and Medical Physicists in a Single Radiotherapy Department. Frontiers in Oncology, 2021, 11, 706034.	2.8	1
96	Full forward Monte Carlo calculation of portal dose from MLC collimated treatment beams. Physics in Medicine and Biology, 2004, 49, 355-355.	3.0	1
97	79 Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations. Radiotherapy and Oncology, 2005, 76, S46-S47.	0.6	O
98	195 Evaluation of the treatment planning system of the Cyberknife by means of a comparison to Monte Carlo calculation. Radiotherapy and Oncology, 2005, 76, S96.	0.6	0
99	401 IMRT plan verification using a 2D ion chamber array. Radiotherapy and Oncology, 2005, 76, S176-S177.	0.6	O
100	Reply to "Comment on â€~Monte Carlo simulation of an xâ€ray volume imaging cone beam CT unit' â Phys. 36, 1039 (2009)]. Medical Physics, 2009, 36, 1040-1040.	―[Med. 3.0	0
101	DEVELOPMENT OF A MONTE CARLO BASED TECHNIQUE TO IMPROVE ACCURACY OF PORTAL DOSIMETRY. Radiotherapy and Oncology, 2009, 92, S212.	0.6	O
102	Special section: Selected papers from the Second European Workshop on Monte Carlo Treatment Planning (MCTP2009). Physics in Medicine and Biology, 2010, 55, .	3.0	0
103	1220 poster INCORPORATING CBCT CONCOMITANT DOSE IN TREATMENT PLANNING. Radiotherapy and Oncology, 2011, 99, S454-S455.	0.6	0
104	380 oral A VIRTUAL SOURCE MODEL FOR CONE BEAM CT DOSE DEPOSITION. Radiotherapy and Oncology, 2011, 99, S150.	0.6	0
105	522 oral TREATMENT PLANNING SYSTEM BASED EXIT DOSIMETRY. Radiotherapy and Oncology, 2011, 99, S212.	0.6	0
106	1473 poster DOSIMETRIC CHARACTERISATION OF A CARBON FIBRE TABLE-TOP IN THE KV ENERGY RANGE. Radiotherapy and Oncology, 2011, 99, S548-S549.	0.6	0
107	Progress Towards Prospective Real-Time Review of Outlining in GI Trials at a UK Radiation Therapy Quality Assurance Center. International Journal of Radiation Oncology Biology Physics, 2014, 90, S734-S735.	0.8	O
108	P-222 Analysis of tumour contours and radiotherapy planning of "on-trial―patients undergoing chemoradiotherapy (CRT) in SCALOP trial: does pre-trial Radiotherapy Quality Assurance (RTQA) improve the quality of "on-trial―radiotherapy?. Annals of Oncology, 2016, 27, ii64.	1.2	0

#	Article	IF	CITATIONS
109	PO-0711: Relating CT image heterogeneity to patient outcome in the SCOPE 1 oesophageal cancer trial. Radiotherapy and Oncology, 2016, 119, S332-S333.	0.6	0
110	PO-0933: Towards standardisation of PET auto-segmentation with the ATLAAS machine learning algorithm. Radiotherapy and Oncology, 2016, 119, S452.	0.6	0
111	EP-1819: Plan of the Day is the optimal approach to address organ motion for cervical cancer IMRT. Radiotherapy and Oncology, 2016, 119, S853.	0.6	0
112	EP-1872: Benchmarking texture analysis for PET in oesophageal cancer. Radiotherapy and Oncology, 2016, 119, S883.	0.6	0
113	EP-1878: Feasibility of gel phantoms in MRI for the assessment of kurtosis for prostate brachytherapy. Radiotherapy and Oncology, 2016, 119, S887-S888.	0.6	0
114	EP-1794: Quantification of stomach movement using CBCT images. Radiotherapy and Oncology, 2016, 119, S840-S841.	0.6	0
115	EP-1918: Radiotherapy quality assurance in the TREC trial. Radiotherapy and Oncology, 2016, 119, S910.	0.6	0
116	PO-0949: Automated approval of a pre trial benchmark RTTQA case. The ARISTOTLE experience. Radiotherapy and Oncology, 2016, 119, S461-S462.	0.6	0
117	EP-1644: Fast, high quality, semi-automated and fully-automated prostate radiotherapy treatment planning. Radiotherapy and Oncology, 2016, 119, S768.	0.6	0
118	Abstract ID: 160 Advanced personalised 3D dosimetry based on Monte Carlo simulation for Peptide Receptor Radionuclide Therapy. Physica Medica, 2017, 42, 34.	0.7	0
119	PV-0323: Development of a prognostic model incorporating PET texture analysis in oesophageal cancer patients. Radiotherapy and Oncology, 2017, 123, S169.	0.6	0
120	OC-0446: A Fully Automated VMAT Planning System with Site-Configurable Algorithm. Radiotherapy and Oncology, 2017, 123, S236-S237.	0.6	0
121	EP-1454: Comparison of Treatment Planning Algorithms and Monte Carlo Simulations in Oesophageal Radiotherapy. Radiotherapy and Oncology, 2017, 123, S776.	0.6	0
122	[OA169] Advanced personalised 3D dosimetry for peptide receptor radionuclide therapy based on monte carlo method. Physica Medica, 2018, 52, 65.	0.7	0
123	PV-0318: External Validation of Radiation-Induced Dyspnea Models on Esophageal Cancer Radiotherapy Patients. Radiotherapy and Oncology, 2018, 127, S168.	0.6	0
124	OC-0420: Evaluating the variability of hippocampal contouring and dosimetric effect in Hippocampal sparing WBRT. Radiotherapy and Oncology, 2018, 127, S219-S220.	0.6	0
125	PO-0931: Dependency of patient risk stratification on PET target volume definition in Oesophageal cancer. Radiotherapy and Oncology, 2018, 127, S503-S504.	0.6	0
126	EP-1959: Does library sub-categorisation improve auto-outlining accuracy in breast radiotherapy planning?. Radiotherapy and Oncology, 2018, 127, S1065.	0.6	0

#	Article	IF	Citations
127	EP-2141: Evaluation of 2D and 3D radiomics features extracted from CT images of oesophageal cancer patients. Radiotherapy and Oncology, 2018, 127, S1180-S1181.	0.6	0
128	EP-1748 Adaptive solution for an improved treatment verification using Dosimetry Check system. Radiotherapy and Oncology, 2019, 133, S942-S943.	0.6	0
129	PO-0996 A knowledge-based tool to estimate the gain of re-planning strategy for Head and Neck (HN) ART. Radiotherapy and Oncology, 2019, 133, S548-S549.	0.6	0
130	OC-0183 Multi-Institutional Evaluation of a Pareto Navigation Guided Automated Planning Solution. Radiotherapy and Oncology, 2019, 133, S92-S93.	0.6	0
131	OC-0544 Distributed learning on 20 000+ lung cancer patients. Radiotherapy and Oncology, 2019, 133, S287-S288.	0.6	0
132	PO-0963 A novel normalisation technique for voxel size dependent radiomic features in oesophageal cancer. Radiotherapy and Oncology, 2019, 133, S523-S524.	0.6	0
133	PO-0964 Stability and prognostic significance of CT radiomic features from oesophageal cancer patients. Radiotherapy and Oncology, 2019, 133, S524-S525.	0.6	0
134	EP-1926 Radiomics in rectal cancer: prognostic significance of 3D features extracted from diagnostic MRI. Radiotherapy and Oncology, 2019, 133, S1048.	0.6	0
135	EP-2010 A QA method for evaluation of deformable image registration in head and neck adaptive radiotherapy. Radiotherapy and Oncology, 2019, 133, S1101.	0.6	0
136	EP-1744 Enhancing the accuracy in VMAT dose verification by the use of EPID-based commercial software. Radiotherapy and Oncology, 2019, 133, S940-S941.	0.6	0
137	Impact Of Metabolic Response-Based Adaptive Radiotherapy On The High Dose Volume And Normal Tissue Structures In Human Papilloma Virus-Positive Oropharyngeal Squamous Cell Carcinoma: A Pilot In-Silico Study. International Journal of Radiation Oncology Biology Physics, 2020, 108, e804-e805.	0.8	0
138	SU-FF-T-360: Software Tools for 4-D and Adaptive Treatment Planning Data Visualization and Manipulation (CERR Version 3). Medical Physics, 2005, 32, 2033-2033.	3.0	0
139	SU-FF-T-409: The Computational Environment for Radiotherapy Research: New Tools for Multi-Modality Imaging, Treatment Plan Comparisons, and Plan Evaluations. Medical Physics, 2006, 33, 2140-2140.	3.0	0
140	SUâ€FFâ€Tâ€181: Dosimetric Uncertainties in IMRT QA in Plastic Phantoms Due to CT Calibration. Medical Physics, 2007, 34, 2442-2442.	3.0	0
141	SU-FF-J-07: Modeling the Elekta XVI CBCT Beam in a Commercial Treatment Planning System. Medical Physics, 2009, 36, 2476-2476.	3.0	0
142	SUâ€GGâ€Jâ€52: Inclusion of KV CBCT Dose in the Patient Treatment Plans and Evaluation of Dose to Normal Tissue and Critical Organs. Medical Physics, 2010, 37, 3157-3157.	3.0	0
143	SU-E-J-15: Calculating the Dose from KV Cone Beam CT Within and Outside the Treatment Volume Using a Treatment Planning System. Medical Physics, 2012, 39, 3655-3655.	3.0	0
144	WE-E-108-08: Dosimetric and Biological Benchmarking of a Murine Total Marrow Irradiation Platform. Medical Physics, 2013, 40, 489-489.	3.0	0

#	Article	IF	CITATIONS
145	SUâ€Eâ€Tâ€69: A Radiobiological Investigation of Dose Escalation in Lower Oesophageal Tumours with a Focus On Gastric Toxicity. Medical Physics, 2015, 42, 3346-3347.	3.0	O
146	THâ€ABâ€304â€11: The Influence of Radiotherapy Treatment Method On Dose Distribution and Its Relation to Patient Outcome in the SCOPE 1 Oesophageal Cancer Trial Using Type B Algorithms. Medical Physics, 2015, 42, 3703-3703.	3.0	0
147	A Self Organizing Map for Exploratory Analysis of PET Radiomic Features. , 2020, , .		0
148	PD-0422: Evaluating inter-observer variation in oesophageal target volume delineation. Radiotherapy and Oncology, 2020, 152, S229-S230.	0.6	0
149	PO-1504: Pareto navigation guided automated planning: is a single patient enough to calibrate a solution?. Radiotherapy and Oncology, 2020, 152, S811-S812.	0.6	0
150	PO-1565: Multiparametric MRI radiomics model to predict overall survival in Glioblastoma Multiforme. Radiotherapy and Oncology, 2020, 152, S847-S848.	0.6	0
151	PO-1568: The Impact of Varying Number of OSEM Subsets on PET Radiomic Features: A Preclinical Study. Radiotherapy and Oncology, 2020, 152, S849.	0.6	0