Prashanth Rangan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3090867/publications.pdf

Version: 2024-02-01

24 papers 1,118 citations

686830 13 h-index 23 g-index

32 all docs 32 docs citations

times ranked

32

1023 citing authors

#	Article	IF	CITATIONS
1	piRNA Production Requires Heterochromatin Formation in Drosophila. Current Biology, 2011, 21, 1373-1379.	1.8	195
2	Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1574-1579.	3.3	136
3	Germ Cells Are Forever. Cell, 2008, 132, 559-562.	13.5	121
4	Temporal and Spatial Control of Germ-Plasm RNAs. Current Biology, 2009, 19, 72-77.	1.8	98
5	Structural Requirement for Mg2+ Binding in the Group I Intron Core. Journal of Molecular Biology, 2003, 329, 229-238.	2.0	79
6	RNA Tertiary Interactions Mediate Native Collapse of a Bacterial Group I Ribozyme. Journal of Molecular Biology, 2005, 353, 1199-1209.	2.0	66
7	Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling. Nature Communications, 2016, 7, 12331.	5.8	61
8	Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA. Journal of Molecular Biology, 2004, 339, 41-51.	2.0	56
9	Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila. PLoS Genetics, 2016, 12, e1005918.	1.5	39
10	Structural Rearrangements Linked to Global Folding Pathways of the Azoarcus Group I Ribozyme. Journal of Molecular Biology, 2009, 386, 1167-1178.	2.0	37
11	Sequential Regulation of Maternal mRNAs through a Conserved cis-Acting Element in Their 3′ UTRs. Cell Reports, 2018, 25, 3828-3843.e9.	2.9	27
12	Post-transcriptional gene regulation regulates germline stem cell to oocyte transition during Drosophila oogenesis. Current Topics in Developmental Biology, 2020, 140, 3-34.	1.0	24
13	Tip60 complex promotes expression of a differentiation factor to regulate germline differentiation in female <i>Drosophila </i> i> Molecular Biology of the Cell, 2018, 29, 2933-2945.	0.9	23
14	RNA degradation is required for the germ-cell to maternal transition in Drosophila. Current Biology, 2021, 31, 2984-2994.e7.	1.8	22
15	Transient transcriptional silencing alters the cell cycle to promote germline stem cell differentiation in Drosophila. Developmental Biology, 2018, 434, 84-95.	0.9	18
16	Msl3 promotes germline stem cell differentiation in female <i>Drosophila</i> . Development (Cambridge), 2022, 149, .	1.2	17
17	A switch in the mode of Wnt signaling orchestrates the formation of germline stem cell differentiation niche in Drosophila. PLoS Genetics, 2018, 14, e1007154.	1.5	16
18	A translation control module coordinates germline stem cell differentiation with ribosome biogenesis during Drosophila oogenesis. Developmental Cell, 2022, 57, 883-900.e10.	3.1	15

#	Article	IF	CITATIONS
19	Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation. Results and Problems in Cell Differentiation, 2017, 59, 1-30.	0.2	13
20	Dynamic regulation of ribosome levels and translation during development. Seminars in Cell and Developmental Biology, 2023, 136, 27-37.	2.3	13
21	Tunable Transcriptional Interference at the Endogenous Alcohol Dehydrogenase Gene Locus in <i>Drosophila melanogaster /i>. G3: Genes, Genomes, Genetics, 2020, 10, 1575-1583.</i>	0.8	8
22	Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossaâ€Porthos axis in Drosophila. EMBO Journal, 2022, 41, e109049.	3.5	8
23	Sequence-selective purification of biological RNAs using DNA nanoswitches. Cell Reports Methods, 2021, 1, 100126.	1.4	5
24	Oo-site: A dashboard to visualize gene expression during $\langle i \rangle$ Drosophila $\langle i \rangle$ oogenesis suggests meiotic entry is regulated post-transcriptionally. Biology Open, 2022, 11, .	0.6	1