Noëlle Billon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3090816/publications.pdf

Version: 2024-02-01

759233 752698 20 429 12 20 h-index citations g-index papers 21 21 21 455 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Assessment for stretchability condition of polymers and Time-Temperature Superposition Principle; first step towards a test for recycled PET?. Polymer, 2021, 231, 124145.	3.8	5
2	Effects of annealing prior to stretching on strain induced crystallization of polyethylene terephthalate. Polymer, 2021, 230, 124078.	3.8	10
3	Comparative Analysis of the Mechanical Behaviour of PEF and PET Uniaxial Stretching Based on the Time/Temperature Superposition Principle. Polymers, 2021, 13, 3295.	4.5	11
4	Strain-induced crystallization of poly(ethylene 2,5-furandicarboxylate). Mechanical and crystallographic analysis. Polymer, 2020, 187, 122126.	3.8	16
5	Heat source and voiding signatures of Mullins damage in filled EPDM. Polymer Testing, 2020, 91, 106838.	4.8	8
6	Conformational Change Analysis of Poly(ethylene 2,5-furandicarboxylate) and Poly(ethylene) Tj ETQq0 0 0 rgBT /	Overlock 4.8	10 Tf 50 542 ⁻
7	Effect of the Strain Rate on Damage in Filled EPDM during Single and Cyclic Loadings. Polymers, 2020, 12, 3021.	4.5	9
8	Understanding of strain-induced crystallization developments scenarios for polyesters: Comparison of poly(ethylene furanoate), PEF, and poly(ethylene terephthalate), PET. Polymer, 2020, 203, 122755.	3.8	25
9	Strain and filler ratio transitions from chains network to filler network damage in EPDM during single and cyclic loadings. Polymer, 2020, 197, 122435.	3.8	16
10	Strain-induced network chains damage in carbon black filled EPDM. Polymer, 2019, 175, 329-338.	3.8	23
11	Time-Temperature-Water content equivalence on dynamic mechanical response of polyamide 6,6. Polymer, 2018, 137, 22-29.	3.8	37
12	Mechanical Behavior—Microstructure Relationships in Injection-Molded Polyamide 66. Polymers, 2018, 10, 1047.	4.5	10
13	Strain induced crystallization in biobased Poly(ethylene 2,5-furandicarboxylate) (PEF); conditions for appearance and microstructure analysis. Polymer, 2018, 158, 364-371.	3.8	27
14	Viscoelastic rheology in the melting and crystallization domain: Application to polypropylene copolymers. Journal of Applied Polymer Science, 2017, 134, .	2.6	4
15	Modeling of time dependent mechanical behavior of polymers: Comparison between amorphous and semicrystalline polyethylene terephthalate. Journal of Applied Polymer Science, 2016, 133, .	2.6	19
16	Time dependent mechanical modeling for polymers based on network theory. AIP Conference Proceedings, 2016, , .	0.4	2
17	On the use of a four-cameras stereovision system toÂcharacterizeÂlargeÂ3D deformation in elastomers. Polymer Testing, 2016, 56, 314-320.	4.8	27
18	Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state. European Polymer Journal, 2015, 68, 288-301.	5.4	89

#	Article	IF	CITATIONS
19	New constitutive modeling for timeâ€dependent mechanical behavior of polymers close to glass transition: Fundamentals and experimental validation. Journal of Applied Polymer Science, 2012, 125, 4390-4401.	2.6	41
20	The Tensile Behaviour of an Injection-Moulded Propylene-Ethylene Copolymer: the Effect of the Local Thermomechanical Processing Conditions. Polymer International, 1997, 43, 159-166.	3.1	25