## Yonatan H Grad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/309080/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Epidemiology and genomics of a slow outbreak of methicillin-resistant <i>Staphyloccus aureus</i><br>(MRSA) in a neonatal intensive care unit: Successful chronic decolonization of MRSA-positive<br>healthcare personnel. Infection Control and Hospital Epidemiology, 2023, 44, 589-596. | 1.0 | 3         |
| 2  | Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection: A Case Series From a 12-Month Longitudinal Occupational Cohort. Clinical Infectious Diseases, 2022, 74, 1682-1685.                                                                                                           | 2.9 | 9         |
| 3  | Evaluating spatially adaptive guidelines for the treatment of gonorrhea to reduce the incidence of gonococcal infection and increase the effective lifespan of antibiotics. PLoS Computational Biology, 2022, 18, e1009842.                                                               | 1.5 | 1         |
| 4  | Trends in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Seroprevalence in<br>Massachusetts Estimated from Newborn Screening Specimens. Clinical Infectious Diseases, 2022, 75,<br>e105-e113.                                                                               | 2.9 | 3         |
| 5  | Analysis of multiple bacterial species and antibiotic classes reveals large variation in the association between seasonal antibiotic use and resistance. PLoS Biology, 2022, 20, e3001579.                                                                                                | 2.6 | 12        |
| 6  | Loci for prediction of penicillin and tetracycline susceptibility in Neisseria gonorrhoeae: a genome-wide association study. Lancet Microbe, The, 2022, 3, e376-e381.                                                                                                                     | 3.4 | 11        |
| 7  | ANTICIPATING RACIAL/ETHNIC MORTALITY DISPLACEMENT FROM COVID-19. American Journal of Epidemiology, 2022, 191, 1519-1520.                                                                                                                                                                  | 1.6 | 4         |
| 8  | Sculpting the Bacterial <i>O</i> -Glycoproteome: Functional Analyses of Orthologous<br>Oligosaccharyltransferases with Diverse Targeting Specificities. MBio, 2022, 13, e0379721.                                                                                                         | 1.8 | 2         |
| 9  | Association Between COVID-19 Booster Vaccination and Omicron Infection in a Highly Vaccinated<br>Cohort of Players and Staff in the National Basketball Association. JAMA - Journal of the American<br>Medical Association, 2022, 328, 209.                                               | 3.8 | 21        |
| 10 | Modelling methicillin-resistant <i>Staphylococcus aureus</i> decolonization: interactions between body sites and the impact of site-specific clearance. Journal of the Royal Society Interface, 2022, 19, .                                                                               | 1.5 | 4         |
| 11 | Characterizing SARS-CoV-2 Viral Clearance Kinetics to Improve the Design of Antiviral Pharmacometric Studies. Antimicrobial Agents and Chemotherapy, 2022, 66, .                                                                                                                          | 1.4 | 16        |
| 12 | The Distribution and Spread of Susceptible and Resistant <i>Neisseria gonorrhoeae</i> Across<br>Demographic Groups in a Major Metropolitan Center. Clinical Infectious Diseases, 2021, 73, e3146-e3155.                                                                                   | 2.9 | 19        |
| 13 | Distinguishing the Roles of Antibiotic Stewardship and Reductions in Outpatient Visits in Generating a 5-Year Decline in Antibiotic Prescribing. Clinical Infectious Diseases, 2021, 72, 1568-1576.                                                                                       | 2.9 | 7         |
| 14 | Implications of Test Characteristics and Population Seroprevalence on "Immune Passport―Strategies.<br>Clinical Infectious Diseases, 2021, 72, e412-e414.                                                                                                                                  | 2.9 | 19        |
| 15 | Potential Biases Arising From Epidemic Dynamics in Observational Seroprotection Studies. American<br>Journal of Epidemiology, 2021, 190, 328-335.                                                                                                                                         | 1.6 | 11        |
| 16 | Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science, 2021, 371, 916-921.                                                                                                                                                                             | 6.0 | 588       |
| 17 | Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys. ELife, 2021, 10, .                                                                                                                                                         | 2.8 | 59        |
| 18 | Emergence and evolution of antimicrobial resistance genes and mutations in Neisseria gonorrhoeae.<br>Genome Medicine, 2021, 13, 51.                                                                                                                                                       | 3.6 | 25        |

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Reduction in Antibiotic Prescribing Attainable With a Gonococcal Vaccine. Clinical Infectious Diseases, 2021, 73, e1368-e1371.                                                                                                                                     | 2.9  | 0         |
| 20 | SARS-CoV-2 Transmission Risk Among National Basketball Association Players, Staff, and Vendors<br>Exposed to Individuals With Positive Test Results After COVID-19 Recovery During the 2020 Regular and<br>Postseason. JAMA Internal Medicine, 2021, 181, 960-966. | 2.6  | 32        |
| 21 | A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Medicine, 2021, 13, 61.                                                                                             | 3.6  | 63        |
| 22 | Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination. Nature Reviews Immunology, 2021, 21, 330-335.                                                                                                                              | 10.6 | 98        |
| 23 | Childhood Respiratory Outpatient Visits Correlate With Socioeconomic Status and Drive Geographic Patterns in Antibiotic Prescribing. Journal of Infectious Diseases, 2021, 223, 2029-2037.                                                                         | 1.9  | 6         |
| 24 | Modeling the impact of racial and ethnic disparities on COVID-19 epidemic dynamics. ELife, 2021, 10, .                                                                                                                                                             | 2.8  | 22        |
| 25 | Identification of bile acid and fatty acid species as candidate rapidly bactericidal agents for topical treatment of gonorrhoea. Journal of Antimicrobial Chemotherapy, 2021, 76, 2569-2577.                                                                       | 1.3  | 3         |
| 26 | Viral dynamics of acute SARS-CoV-2 infection and applications to diagnostic and public health strategies. PLoS Biology, 2021, 19, e3001333.                                                                                                                        | 2.6  | 133       |
| 27 | Disseminated Gonococcal Infection Complicated by Prosthetic Joint Infection: Case Report and Genomic and Phylogenetic Analysis. Open Forum Infectious Diseases, 2021, 8, ofaa632.                                                                                  | 0.4  | 5         |
| 28 | Viral Dynamics of SARS-CoV-2 Variants in Vaccinated and Unvaccinated Persons. New England Journal of Medicine, 2021, 385, 2489-2491.                                                                                                                               | 13.9 | 216       |
| 29 | Post-discharge decolonization of patients harboring methicillin-resistant <i>Staphylococcus<br/>aureus</i> (MRSA) USA300 strains: secondary analysis of the CLEAR Trial. Infection Control and<br>Hospital Epidemiology, 2021, , 1-4.                              | 1.0  | 0         |
| 30 | Deciphering the Impact of Bystander Selection for Antibiotic Resistance in Neisseria gonorrhoeae.<br>Journal of Infectious Diseases, 2020, 221, 1033-1035.                                                                                                         | 1.9  | 13        |
| 31 | Fine-Scale Haplotype Structure Reveals Strong Signatures of Positive Selection in a Recombining<br>Bacterial Pathogen. Molecular Biology and Evolution, 2020, 37, 417-428.                                                                                         | 3.5  | 27        |
| 32 | Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nature Reviews Immunology, 2020, 20, 709-713.                                                                                                                                                       | 10.6 | 229       |
| 33 | Increased power from conditional bacterial genome-wide association identifies macrolide resistance mutations in Neisseria gonorrhoeae. Nature Communications, 2020, 11, 5374.                                                                                      | 5.8  | 40        |
| 34 | Reductions in commuting mobility correlate with geographic differences in SARS-CoV-2 prevalence in New York City. Nature Communications, 2020, 11, 4674.                                                                                                           | 5.8  | 105       |
| 35 | Efflux Pump Antibiotic Binding Site Mutations Are Associated with Azithromycin Nonsusceptibility in<br>Clinical Neisseria gonorrhoeae Isolates. MBio, 2020, 11, .                                                                                                  | 1.8  | 12        |
| 36 | Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nature Communications, 2020, 11, 4126.                                                                                                     | 5.8  | 51        |

Yonatan H Grad

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The role of "spillover―in antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29063-29068.                                                                           | 3.3  | 27        |
| 38 | Building an international consortium for tracking coronavirus health status. Nature Medicine, 2020,<br>26, 1161-1165.                                                                                                               | 15.2 | 23        |
| 39 | Aggregated mobility data could help fight COVID-19. Science, 2020, 368, 145-146.                                                                                                                                                    | 6.0  | 303       |
| 40 | Identification of Hidden Population Structure in Time-Scaled Phylogenies. Systematic Biology, 2020, 69, 884-896.                                                                                                                    | 2.7  | 26        |
| 41 | The frontiers of addressing antibiotic resistance in Neisseria gonorrhoeae. Translational Research, 2020, 220, 122-137.                                                                                                             | 2.2  | 20        |
| 42 | Combining genomics and epidemiology to track mumps virus transmission in the United States. PLoS<br>Biology, 2020, 18, e3000611.                                                                                                    | 2.6  | 37        |
| 43 | Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing. Nature<br>Microbiology, 2020, 5, 455-464.                                                                                                  | 5.9  | 74        |
| 44 | Adaptive guidelines for the treatment of gonorrhea to increase the effective life span of antibiotics<br>among men who have sex with men in the United States: A mathematical modeling study. PLoS<br>Medicine, 2020, 17, e1003077. | 3.9  | 6         |
| 45 | Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science, 2020, 368, 860-868.                                                                                                                    | 6.0  | 2,103     |
| 46 | Individual quarantine versus active monitoring of contacts for the mitigation of COVID-19: a modelling study. Lancet Infectious Diseases, The, 2020, 20, 1025-1033.                                                                 | 4.6  | 168       |
| 47 | RNA polymerase mutations cause cephalosporin resistance in clinical Neisseria gonorrhoeae isolates.<br>ELife, 2020, 9, .                                                                                                            | 2.8  | 31        |
| 48 | Potential impact of outpatient stewardship interventions on antibiotic exposures of common bacterial pathogens. ELife, 2020, 9, .                                                                                                   | 2.8  | 10        |
| 49 | Targeted surveillance strategies for efficient detection of novel antibiotic resistance variants. ELife, 2020, 9, .                                                                                                                 | 2.8  | 6         |
| 50 | Using rapid point-of-care tests to inform antibiotic choice to mitigate drug resistance in gonorrhoea.<br>Eurosurveillance, 2020, 25, .                                                                                             | 3.9  | 8         |
| 51 | Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.                                                                                                                   |      | 0         |
| 52 | Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.                                                                                                                   |      | 0         |
| 53 | Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.                                                                                                                   |      | 0         |
| 54 | Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.                                                                                                                   |      | 0         |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.                                                                                             |      | 0         |
| 56 | Combining genomics and epidemiology to track mumps virus transmission in the United States. , 2020, 18, e3000611.                                                                                             |      | 0         |
| 57 | Title is missing!. , 2020, 17, e1003077.                                                                                                                                                                      |      | 0         |
| 58 | Title is missing!. , 2020, 17, e1003077.                                                                                                                                                                      |      | 0         |
| 59 | Title is missing!. , 2020, 17, e1003077.                                                                                                                                                                      |      | 0         |
| 60 | Title is missing!. , 2020, 17, e1003077.                                                                                                                                                                      |      | 0         |
| 61 | Applications of genomics to slow the spread of multidrugâ€resistant <i>Neisseria gonorrhoeae</i> .<br>Annals of the New York Academy of Sciences, 2019, 1435, 93-109.                                         | 1.8  | 31        |
| 62 | The impact of antimicrobials on gonococcal evolution. Nature Microbiology, 2019, 4, 1941-1950.                                                                                                                | 5.9  | 91        |
| 63 | Surveillance to maintain the sensitivity of genotype-based antibiotic resistance diagnostics. PLoS<br>Biology, 2019, 17, e3000547.                                                                            | 2.6  | 15        |
| 64 | Evaluation of parameters affecting performance and reliability of machine learning-based antibiotic susceptibility testing from whole genome sequencing data. PLoS Computational Biology, 2019, 15, e1007349. | 1.5  | 64        |
| 65 | Bridging of Neisseria gonorrhoeae lineages across sexual networks in the HIV pre-exposure prophylaxis era. Nature Communications, 2019, 10, 3988.                                                             | 5.8  | 69        |
| 66 | Impact of Species Diversity on the Design of RNA-Based Diagnostics for Antibiotic Resistance in<br><i>Neisseria gonorrhoeae</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .                          | 1.4  | 22        |
| 67 | Outpatient Antibiotic Prescribing in Massachusetts, 2011–2015. Open Forum Infectious Diseases, 2019, 6, ofz169.                                                                                               | 0.4  | 17        |
| 68 | Cumulative Probability of Receiving an Antibiotic Prescription over Time. New England Journal of Medicine, 2019, 380, 1872-1873.                                                                              | 13.9 | 5         |
| 69 | A Bayesian model of acquisition and clearance of bacterial colonization incorporating within-host variation. PLoS Computational Biology, 2019, 15, e1006534.                                                  | 1.5  | 7         |
| 70 | Antimicrobial Resistance in Neisseria gonorrhoeae: Proceedings of the STAR Sexually Transmitted<br>Infection—Clinical Trial Group Programmatic Meeting. Sexually Transmitted Diseases, 2019, 46, e18-e25.     | 0.8  | 15        |
| 71 | Case-based surveillance of antimicrobial resistance with full susceptibility profiles. JAC-Antimicrobial Resistance, 2019, 1, dlz070.                                                                         | 0.9  | 19        |
| 72 | Multi-strain Tn-Seq reveals common daptomycin resistance determinants in Staphylococcus aureus.<br>PLoS Pathogens, 2019, 15, e1007862.                                                                        | 2.1  | 68        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Genetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system. PLoS<br>Genetics, 2019, 15, e1008532.                                                                                                            | 1.5 | 16        |
| 74 | Azithromycin Susceptibility Among <i>Neisseria gonorrhoeae</i> Isolates and Seasonal Macrolide Use.<br>Journal of Infectious Diseases, 2019, 219, 619-623.                                                                                         | 1.9 | 41        |
| 75 | Interaction Patterns of Men Who Have Sex With Men on a Geosocial Networking Mobile App in Seven<br>United States Metropolitan Areas: Observational Study. Journal of Medical Internet Research, 2019, 21,<br>e13766.                               | 2.1 | 5         |
| 76 | Response to comment on 'The distribution of antibiotic use and its association with antibiotic resistance'. ELife, 2019, 8, .                                                                                                                      | 2.8 | 1         |
| 77 | Poor Immunogenicity, Not Vaccine Strain Egg Adaptation, May Explain the Low H3N2 Influenza Vaccine<br>Effectiveness in 2012–2013. Clinical Infectious Diseases, 2018, 67, 327-333.                                                                 | 2.9 | 53        |
| 78 | Weak Epistasis May Drive Adaptation in Recombining Bacteria. Genetics, 2018, 208, 1247-1260.                                                                                                                                                       | 1.2 | 51        |
| 79 | Vaccine waning and mumps re-emergence in the United States. Science Translational Medicine, 2018, 10, .                                                                                                                                            | 5.8 | 101       |
| 80 | Trends in Antibiotic Susceptibility in Staphylococcus aureus in Boston, Massachusetts, from 2000 to 2014. Journal of Clinical Microbiology, 2018, 56, .                                                                                            | 1.8 | 37        |
| 81 | Racial/Ethnic Disparities in Antimicrobial Drug Use, United States, 2014–2015. Emerging Infectious<br>Diseases, 2018, 24, 2126-2128.                                                                                                               | 2.0 | 26        |
| 82 | Estimating the proportion of bystander selection for antibiotic resistance among potentially<br>pathogenic bacterial flora. Proceedings of the National Academy of Sciences of the United States of<br>America, 2018, 115, E11988-E11995.          | 3.3 | 141       |
| 83 | Response to Skowronski and De Serres. Clinical Infectious Diseases, 2018, 67, 1476-1476.                                                                                                                                                           | 2.9 | Ο         |
| 84 | Multidrug-resistant Neisseria gonorrhoeae: implications for future treatment strategies. Lancet<br>Infectious Diseases, The, 2018, 18, 599.                                                                                                        | 4.6 | 9         |
| 85 | Testing for gonorrhoea should routinely include the pharynx. Lancet Infectious Diseases, The, 2018, 18, 716-717.                                                                                                                                   | 4.6 | 13        |
| 86 | Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nature Microbiology, 2018, 3, 1032-1042.                                                                                 | 5.9 | 132       |
| 87 | Trends in outpatient antibiotic use and prescribing practice among US older adults, 2011-15:<br>observational study. BMJ: British Medical Journal, 2018, 362, k3155.                                                                               | 2.4 | 58        |
| 88 | Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump<br>Component and Transcriptional Regulator in Neisseria gonorrhoeae. MBio, 2018, 9, .                                                              | 1.8 | 133       |
| 89 | The distribution of antibiotic use and its association with antibiotic resistance. ELife, 2018, 7, .                                                                                                                                               | 2.8 | 132       |
| 90 | Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained<br>mechanisms, and limited clonal outbreaks. Proceedings of the National Academy of Sciences of the<br>United States of America, 2017, 114, 1135-1140. | 3.3 | 158       |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | WCS to predict antibiotic MICs for Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 2017, 72, 1937-1947.                                                                                                                               | 1.3 | 169       |
| 92  | Comparing nonpharmaceutical interventions for containing emerging epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4023-4028.                                                                 | 3.3 | 219       |
| 93  | Use of whole-genome sequencing data to analyze 23S rRNA-mediated azithromycin resistance.<br>International Journal of Antimicrobial Agents, 2017, 49, 252-254.                                                                                      | 1.1 | 23        |
| 94  | Genomic Characterization of Urethritis-Associated Neisseria meningitidis Shows that a Wide Range of N. meningitidis Strains Can Cause Urethritis. Journal of Clinical Microbiology, 2017, 55, 3374-3383.                                            | 1.8 | 24        |
| 95  | Deep sequencing of RSV from an adult challenge study and from naturally infected infants reveals heterogeneous diversification dynamics. Virology, 2017, 510, 289-296.                                                                              | 1.1 | 10        |
| 96  | Impact of Rapid Susceptibility Testing and Antibiotic Selection Strategy on the Emergence and Spread of Antibiotic Resistance in Gonorrhea. Journal of Infectious Diseases, 2017, 216, 1141-1149.                                                   | 1.9 | 62        |
| 97  | Vaccine waning and mumps re-emergence in the USA. Open Forum Infectious Diseases, 2017, 4, S25-S25.                                                                                                                                                 | 0.4 | 0         |
| 98  | Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses. Bulletin of the World Health Organization, 2017, 95, 517-525I.                                                                                        | 1.5 | 52        |
| 99  | Metagenomic Sequencing of an Echovirus 30 Genome From Cerebrospinal Fluid of a Patient With Aseptic Meningitis and Orchitis. Open Forum Infectious Diseases, 2017, 4, ofx138.                                                                       | 0.4 | 13        |
| 100 | Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae : an observational study. Lancet Infectious Diseases, The, 2016, 16, 1295-1303.                                                                                          | 4.6 | 149       |
| 101 | Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. Journal of Infection, 2016, 73, 578-587.                                                                            | 1.7 | 54        |
| 102 | Genomic Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides,<br>and Fluoroquinolones in the United States, 2000–2013. Journal of Infectious Diseases, 2016, 214,<br>1579-1587.                                    | 1.9 | 186       |
| 103 | The novel 2016 WHO <i>Neisseria gonorrhoeae</i> reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. Journal of Antimicrobial Chemotherapy, 2016, 71, 3096-3108. | 1.3 | 246       |
| 104 | Biodiversity and hypervirulence of Listeria monocytogenes. Nature Genetics, 2016, 48, 229-230.                                                                                                                                                      | 9.4 | 8         |
| 105 | Improving Control of Antibiotic-Resistant Gonorrhea by Integrating Research Agendas Across<br>Disciplines: Key Questions Arising From Mathematical Modeling. Journal of Infectious Diseases, 2016,<br>213, 883-890.                                 | 1.9 | 38        |
| 106 | Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens. Microbiology and<br>Molecular Biology Reviews, 2015, 79, 101-116.                                                                                                      | 2.9 | 183       |
| 107 | K-Pax2: Bayesian identification of cluster-defining amino acid positions in large sequence datasets.<br>Microbial Genomics, 2015, 1, e000025.                                                                                                       | 1.0 | 12        |
| 108 | Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infectious Diseases, The, 2014, 14, 220-226.                                                          | 4.6 | 193       |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Within-Host Whole-Genome Deep Sequencing and Diversity Analysis of Human Respiratory Syncytial<br>Virus Infection Reveals Dynamics of Genomic Diversity in the Absence and Presence of Immune<br>Pressure. Journal of Virology, 2014, 88, 7286-7293. | 1.5  | 53        |
| 110 | <i>In Vitro</i> Selection of Neisseria gonorrhoeae Mutants with Elevated MIC Values and Increased Resistance to Cephalosporins. Antimicrobial Agents and Chemotherapy, 2014, 58, 6986-6989.                                                          | 1.4  | 20        |
| 111 | Contrasting within- and between-host immune selection shapes Neisseria Opa repertoires. Scientific<br>Reports, 2014, 4, 6554.                                                                                                                        | 1.6  | 7         |
| 112 | Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term<br>Evolution of an Emerging Pathogen. MBio, 2013, 4, e00452-12.                                                                                            | 1.8  | 68        |
| 113 | Deciphering the Origins and Tracking the Evolution of Cholera Epidemics with Whole-Genome-Based<br>Molecular Epidemiology. MBio, 2013, 4, e00670-13.                                                                                                 | 1.8  | 12        |
| 114 | A Patient with Fevers and Fatigue. New England Journal of Medicine, 2013, 368, e9.                                                                                                                                                                   | 13.9 | 1         |
| 115 | Cholera Modeling. Epidemiology, 2012, 23, 523-530.                                                                                                                                                                                                   | 1.2  | 61        |
| 116 | Genomic epidemiology of the <i>Escherichia coli</i> O104:H4 outbreaks in Europe, 2011. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3065-3070.                                                        | 3.3  | 262       |
| 117 | Reply to Guy et al.: Support for a bottleneck in the 2011 Escherichia coli O104:H4 outbreak in Germany.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109,<br>E3629-E3630.                               | 3.3  | 2         |
| 118 | Secular Trends in Helicobacter pylori Seroprevalence in Adults in the United States: Evidence for Sustained Race/Ethnic Disparities. American Journal of Epidemiology, 2012, 175, 54-59.                                                             | 1.6  | 128       |
| 119 | Bitter Pills. New England Journal of Medicine, 2010, 363, 1847-1851.                                                                                                                                                                                 | 13.9 | 0         |
| 120 | Bitter Pills. New England Journal of Medicine, 2010, 363, e26.                                                                                                                                                                                       | 13.9 | 1         |
| 121 | Prediction of similarly acting cis-regulatory modules by subsequence profiling and comparative genomics in Drosophila melanogaster and D.pseudoobscura. Bioinformatics, 2004, 20, 2738-2750.                                                         | 1.8  | 59        |
| 122 | Identification of many microRNAs that copurify with polyribosomes in mammalian neurons.<br>Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 360-365.                                                      | 3.3  | 528       |
| 123 | Computational and Experimental Identification of C. elegans microRNAs. Molecular Cell, 2003, 11, 1253-1263.                                                                                                                                          | 4.5  | 289       |
| 124 | Bridging of <i>Neisseria Gonorrhoeae</i> Across Diverse Sexual Networks in the HIV Pre-Exposure<br>Prophylaxis (PrEP) Era: A Clinical and Molecular Epidemiological Study. SSRN Electronic Journal, 0, , .                                           | 0.4  | 1         |