Da-Wei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3090516/publications.pdf

Version: 2024-02-01

713444 567247 1,176 22 15 21 citations h-index g-index papers 22 22 22 1077 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Improvement of Neutral Lipid and Polyunsaturated Fatty Acid Biosynthesis by Overexpressing a Type 2 Diacylglycerol Acyltransferase in Marine Diatom Phaeodactylum tricornutum. Marine Drugs, 2013, 11 , 4558-4569.	4.6	229
2	Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metabolic Engineering, 2017, 41, 212-221.	7.0	156
3	Occurrence of plastidial triacylglycerol synthesis and the potential regulatory role of AGPAT in the model diatom Phaeodactylum tricornutum. Biotechnology for Biofuels, 2017, 10, 97.	6.2	115
4	A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. Journal of Biotechnology, 2016, 229, 65-71.	3.8	113
5	Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum. Biotechnology for Biofuels, 2016, 9, 60.	6.2	101
6	Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion. Science Advances, 2019, 5, eaau3795.	10.3	68
7	Construction of Novel Chloroplast Expression Vector and Development of an Efficient Transformation System for the Diatom Phaeodactylum tricornutum. Marine Biotechnology, 2014, 16, 538-546.	2.4	65
8	The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa. Microbial Cell Factories, 2016, 15, 120.	4.0	57
9	Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum. Scientific Reports, 2015, 5, 10373.	3.3	53
10	High-efficiency promoter-driven coordinated regulation of multiple metabolic nodes elevates lipid accumulation in the model microalga Phaeodactylum tricornutum. Microbial Cell Factories, 2018, 17, 54.	4.0	53
11	Constitutive and Chloroplast Targeted Expression of Acetyl-CoA Carboxylase in Oleaginous Microalgae Elevates Fatty Acid Biosynthesis. Marine Biotechnology, 2018, 20, 566-572.	2.4	36
12	Molecular exploration of algal interaction between the diatom Phaeodactylum tricornutum and the dinoflagellate Alexandrium tamarense. Algal Research, 2016, 17, 132-141.	4.6	29
13	Overproduction of Bioactive Algal Chrysolaminarin by the Critical Carbon Flux Regulator Phosphoglucomutase. Biotechnology Journal, 2019, 14, 1800220.	3.5	25
14	Potentiation of concurrent expression of lipogenic genes by novel strong promoters in the oleaginous microalga <i>Phaeodactylum tricornutum</i> . Biotechnology and Bioengineering, 2019, 116, 3006-3015.	3.3	17
15	Enrichment of f/2 medium hyperaccumulates biomass and bioactive compounds in the diatom Phaeodactylum tricornutum. Algal Research, 2020, 47, 101872.	4.6	15
16	Changes in colonic microbiotas in rat after long-term exposure to low dose of okadaic acid. Chemosphere, 2020, 254, 126874.	8.2	14
17	Effective bioremediation of tobacco wastewater by microalgae at acidic pH for synergistic biomass and lipid accumulation. Journal of Hazardous Materials, 2022, 426, 127820.	12.4	13
18	Small RNA analysis of Perna viridis after exposure to Prorocentrum lima, a DSP toxins-producing dinoflagellate. Aquatic Toxicology, 2021, 239, 105950.	4.0	7

#	Article	IF	CITATION
19	Multi-omics analysis reveals metabolism of okadaic acid in gut lumen of rat. Archives of Toxicology, 2022, 96, 831-843.	4.2	6
20	Rapid and Effective Electroporation Protocol for Nannochloropsis oceanica. Methods in Molecular Biology, 2020, 2050, 175-179.	0.9	3
21	Plastidial and ER Triacylglycerol Biosynthesis in a Growth Phase-Dependent Manner in the Heterokont Nannochloropsis oceanica. Frontiers in Marine Science, 2020, 7, .	2.5	1
22	Transcriptional Engineering for Enhancing Valuable Components in Photosynthetic Microalgae., 2019, , 353-366.		0