Michael Nilges

List of Publications by Citations

Source: https://exaly.com/author-pdf/3090407/michael-nilges-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 29,429 171 220 h-index g-index citations papers 30,893 6.47 6.9 247 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
220	Crystallography & NMR system: A new software suite for macromolecular structure determination. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 1998 , 54, 905-21		14106
219	Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. <i>FEBS Letters</i> , 1988 , 229, 317-24	3.8	665
218	Refinement of protein structures in explicit solvent. <i>Proteins: Structure, Function and Bioinformatics</i> , 2003 , 50, 496-506	4.2	521
217	Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. <i>Biochemistry</i> , 1989 , 28, 7241-57	3.2	496
216	Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. <i>Protein Engineering, Design and Selection</i> , 1988 , 2, 27-38	1.9	467
215	Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. Circumventing problems associated with folding. <i>FEBS Letters</i> , 1988 , 239, 129-36	3.8	466
214	ARIA2: automated NOE assignment and data integration in NMR structure calculation. <i>Bioinformatics</i> , 2007 , 23, 381-2	7.2	404
213	ARIA: automated NOE assignment and NMR structure calculation. <i>Bioinformatics</i> , 2003 , 19, 315-6	7.2	397
212	Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. <i>Journal of Molecular Biology</i> , 1997 , 269, 408-22	6.5	395
211	Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. <i>Journal of Molecular Biology</i> , 1995 , 245, 645-	66 ^{.5}	324
21 0	Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. <i>EMBO Journal</i> , 2010 , 29, 717-26	13	322
209	A calculation strategy for the structure determination of symmetric dimers by 1H NMR. <i>Proteins: Structure, Function and Bioinformatics</i> , 1993 , 17, 297-309	4.2	301
208	Automated assignment of ambiguous nuclear overhauser effects with ARIA. <i>Methods in Enzymology</i> , 2001 , 339, 71-90	1.7	300
207	RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 59, 662-72	4.2	285
206	Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. <i>Biochemistry</i> , 1987 , 26, 8012-23	3.2	270
205	Inferential structure determination. <i>Science</i> , 2005 , 309, 303-6	33.3	268
204	Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome. <i>Cell</i> , 1996 , 85, 237-45	56.2	258

203	Structure of the pleckstrin homology domain from beta-spectrin. <i>Nature</i> , 1994 , 369, 675-7	50.4	239
202	Influence of non-bonded parameters on the quality of NMR structures: a new force field for NMR structure calculation. <i>Journal of Biomolecular NMR</i> , 1999 , 13, 51-9	3	231
201	The three-dimensional structure of 🛘 -purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics. <i>EMBO Journal</i> , 1986 , 5, 2729-2735	13	208
200	ModBase, a database of annotated comparative protein structure models and associated resources. <i>Nucleic Acids Research</i> , 2014 , 42, D336-46	20.1	207
199	Sampling and efficiency of metric matrix distance geometry: a novel partial metrization algorithm. <i>Journal of Biomolecular NMR</i> , 1992 , 2, 33-56	3	192
198	The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. <i>Current Biology</i> , 1997 , 7, 239-45	6.3	185
197	Ambiguous NOEs and automated NOE assignment. <i>Progress in Nuclear Magnetic Resonance Spectroscopy</i> , 1998 , 32, 107-139	10.4	185
196	Internal repeats in the BRCA2 protein sequence. <i>Nature Genetics</i> , 1996 , 13, 22-3	36.3	173
195	Structure determination of the N-terminal thioredoxin-like domain of protein disulfide isomerase using multidimensional heteronuclear 13C/15N NMR spectroscopy. <i>Biochemistry</i> , 1996 , 35, 7684-91	3.2	172
194	Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. <i>Biophysical Journal</i> , 2005 , 88, 3954-65	2.9	165
193	Complementarity of structure ensembles in protein-protein binding. Structure, 2004, 12, 2125-36	5.2	160
192	The PH superfold: a structural scaffold for multiple functions. <i>Trends in Biochemical Sciences</i> , 1999 , 24, 441-5	10.3	159
191	Posttranslational modification of pili upon cell contact triggers N. meningitidis dissemination. <i>Science</i> , 2011 , 331, 778-82	33.3	149
190	The structure of a novel insecticidal neurotoxin, omega-atracotoxin-HV1, from the venom of an Australian funnel web spider. <i>Nature Structural Biology</i> , 1997 , 4, 559-66		149
189	Relaxation matrix refinement of the solution structure of squash trypsin inhibitor. <i>Journal of Molecular Biology</i> , 1991 , 219, 499-510	6.5	148
188	Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation. <i>Science</i> , 1993 , 261, 328-31	33.3	146
187	Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy. <i>Quarterly Reviews of Biophysics</i> , 1993 , 26, 49-125	7	143
186	Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil. <i>Journal of Molecular Biology</i> , 1997 , 273, 740-51	6.5	135

185	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. <i>Structure</i> , 2015 , 23, 1156-67	5.2	131
184	3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3579-89	16.4	128
183	SNARE protein mimicry by an intracellular bacterium. <i>PLoS Pathogens</i> , 2008 , 4, e1000022	7.6	124
182	Recommendations of the wwPDB NMR Validation Task Force. <i>Structure</i> , 2013 , 21, 1563-70	5.2	117
181	Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity. <i>Journal of Biological Chemistry</i> , 2005 , 280, 33953-9	5.4	117
180	Flexibility and conformational entropy in protein-protein binding. <i>Structure</i> , 2006 , 14, 683-93	5.2	113
179	The three-dimensional structure of the HRDC domain and implications for the Werner and Bloom syndrome proteins. <i>Structure</i> , 1999 , 7, 1557-66	5.2	110
178	Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. <i>Nature Medicine</i> , 2017 , 23, 347-354	50.5	107
177	Visualization of macromolecular structures. <i>Nature Methods</i> , 2010 , 7, S42-55	21.6	107
	Solution structure of the DNA-binding domain and model for the complex of multifunctional		
176	hexameric arginine repressor with DNA. <i>Nature Structural Biology</i> , 1997 , 4, 819-26		104
176 175		3	104
	hexameric arginine repressor with DNA. <i>Nature Structural Biology</i> , 1997 , 4, 819-26 Floating stereospecific assignment revisited: application to an 18 kDa protein and comparison with	3 16.4	100
175	hexameric arginine repressor with DNA. <i>Nature Structural Biology</i> , 1997 , 4, 819-26 Floating stereospecific assignment revisited: application to an 18 kDa protein and comparison with J-coupling data. <i>Journal of Biomolecular NMR</i> , 1997 , 9, 245-58 Toward a unified representation of protein structural dynamics in solution. <i>Journal of the American</i>	16.4	100
175 174	hexameric arginine repressor with DNA. <i>Nature Structural Biology</i> , 1997 , 4, 819-26 Floating stereospecific assignment revisited: application to an 18 kDa protein and comparison with J-coupling data. <i>Journal of Biomolecular NMR</i> , 1997 , 9, 245-58 Toward a unified representation of protein structural dynamics in solution. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16968-75	16.4	100
175 174 173	hexameric arginine repressor with DNA. <i>Nature Structural Biology</i> , 1997 , 4, 819-26 Floating stereospecific assignment revisited: application to an 18 kDa protein and comparison with J-coupling data. <i>Journal of Biomolecular NMR</i> , 1997 , 9, 245-58 Toward a unified representation of protein structural dynamics in solution. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16968-75 1H-NMR stereospecific assignments by conformational data-base searches. <i>Biopolymers</i> , 1990 , 29, 813-Structural biology by NMR: structure, dynamics, and interactions. <i>PLoS Computational Biology</i> , 2008	16.4 2 2 .2	1009897
175 174 173	hexameric arginine repressor with DNA. <i>Nature Structural Biology</i> , 1997 , 4, 819-26 Floating stereospecific assignment revisited: application to an 18 kDa protein and comparison with J-coupling data. <i>Journal of Biomolecular NMR</i> , 1997 , 9, 245-58 Toward a unified representation of protein structural dynamics in solution. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16968-75 1H-NMR stereospecific assignments by conformational data-base searches. <i>Biopolymers</i> , 1990 , 29, 813- Structural biology by NMR: structure, dynamics, and interactions. <i>PLoS Computational Biology</i> , 2008 , 4, e1000168 An efficient protocol for NMR-spectroscopy-based structure determination of protein complexes in	16.4 22 .2	100989794
175 174 173 172	hexameric arginine repressor with DNA. <i>Nature Structural Biology</i> , 1997 , 4, 819-26 Floating stereospecific assignment revisited: application to an 18 kDa protein and comparison with J-coupling data. <i>Journal of Biomolecular NMR</i> , 1997 , 9, 245-58 Toward a unified representation of protein structural dynamics in solution. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16968-75 1H-NMR stereospecific assignments by conformational data-base searches. <i>Biopolymers</i> , 1990 , 29, 813- Structural biology by NMR: structure, dynamics, and interactions. <i>PLoS Computational Biology</i> , 2008 , 4, e1000168 An efficient protocol for NMR-spectroscopy-based structure determination of protein complexes in solution. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1967-70 High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer.	16.4 2 2. 2 5	100 98 97 94 88

(2005-2001)

167	Structural and functional studies of titinß fn3 modules reveal conserved surface patterns and binding to myosin S1a possible role in the Frank-Starling mechanism of the heart. <i>Journal of Molecular Biology</i> , 2001 , 313, 431-47	6.5	82	
166	Three-dimensional structure of acyl carrier protein in solution determined by nuclear magnetic resonance and the combined use of dynamical simulated annealing and distance geometry. <i>FEBS Journal</i> , 1988 , 175, 9-15		77	
165	Classification of protein sequences by homology modeling and quantitative analysis of electrostatic similarity. <i>Proteins: Structure, Function and Bioinformatics</i> , 1999 , 37, 379-87	4.2	76	
164	Three-dimensional structure of phoratoxin in solution: combined use of nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. <i>Biochemistry</i> , 1987 , 26, 1732-1745	3.2	76	
163	The conformations of hirudin in solution: a study using nuclear magnetic resonance, distance geometry and restrained molecular dynamics. <i>EMBO Journal</i> , 1987 , 6, 529-537	13	76	
162	Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes. <i>Journal of Biological Chemistry</i> , 2004 , 279, 46896-906	5.4	73	
161	The solution structure of the first KH domain of FMR1, the protein responsible for the fragile X syndrome. <i>Nature Structural Biology</i> , 1997 , 4, 712-6		71	
160	Pathways and intermediates in forced unfolding of spectrin repeats. <i>Structure</i> , 2002 , 10, 1085-96	5.2	71	
159	Refinement of the solution structure of the DNA hexamer 5Rd(GCATGC)2: combined use of nuclear magnetic resonance and restrained molecular dynamics. <i>Biochemistry</i> , 1987 , 26, 3718-33	3.2	71	
158	Weighting of experimental evidence in macromolecular structure determination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 1756-61	11.5	66	
157	Successful prediction of the coiled coil geometry of the GCN4 leucine zipper domain by simulated annealing: comparison to the X-ray structure. <i>Proteins: Structure, Function and Bioinformatics</i> , 1993 , 15, 133-46	4.2	66	
156	Blind testing of routine, fully automated determination of protein structures from NMR data. <i>Structure</i> , 2012 , 20, 227-36	5.2	64	
155	Refinement of the solution structure of the DNA decamer 5rd (CTGGATCCAG)2: combined use of nuclear magnetic resonance and restrained molecular dynamics. <i>Biochemistry</i> , 1987 , 26, 3734-44	3.2	61	
154	Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel. <i>Bioinformatics</i> , 2016 , 32, 85-95	7.2	60	
153	The structure in solution of the b domain of protein disulfide isomerase. <i>Journal of Biomolecular NMR</i> , 1999 , 13, 357-68	3	60	
152	The solution structure of the Tyr41>His mutant of the single-stranded DNA binding protein encoded by gene V of the filamentous bacteriophage M13. <i>Journal of Molecular Biology</i> , 1994 , 236, 229	-465	60	
151	Essential spaces defined by NMR structure ensembles and molecular dynamics simulation show significant overlap. <i>Proteins: Structure, Function and Bioinformatics</i> , 1998 , 31, 370-382	4.2	58	
150	Replica-exchange Monte Carlo scheme for bayesian data analysis. <i>Physical Review Letters</i> , 2005 , 94, 018	1,05	56	

149	Detailed structural and assembly model of the type II secretion pilus from sparse data. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 13081-6	11.5	54
148	A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints. <i>Journal of Biomolecular NMR</i> , 2008 , 41, 199-208	3	52
147	CASD-NMR: critical assessment of automated structure determination by NMR. <i>Nature Methods</i> , 2009 , 6, 625-6	21.6	51
146	Biskita software platform for structural bioinformatics. <i>Bioinformatics</i> , 2007 , 23, 769-70	7.2	51
145	Correction of spin diffusion during iterative automated NOE assignment. <i>Journal of Magnetic Resonance</i> , 2004 , 167, 334-42	3	51
144	NOE assignment with ARIA 2.0: the nuts and bolts. <i>Methods in Molecular Biology</i> , 2004 , 278, 379-402	1.4	50
143	Ambiguous distance data in the calculation of NMR structures. Folding & Design, 1997, 2, S53-7		49
142	Improved strategies for the determination of protein structures from NMR data: the solution structure of acyl carrier protein. <i>FEBS Letters</i> , 1989 , 242, 218-24	3.8	49
141	Comparative evaluation of 3D virtual ligand screening methods: impact of the molecular alignment on enrichment. <i>Journal of Chemical Information and Modeling</i> , 2010 , 50, 992-1004	6.1	47
140	Comparative analysis of structural and dynamic properties of the loaded and unloaded hemophore HasA: functional implications. <i>Journal of Molecular Biology</i> , 2008 , 376, 517-25	6.5	47
139	Structure of Complement C3(H2O) Revealed By Quantitative Cross-Linking/Mass Spectrometry And Modeling. <i>Molecular and Cellular Proteomics</i> , 2016 , 15, 2730-43	7.6	46
138	A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. <i>Journal of Molecular Biology</i> , 1994 , 240, 341-57	6.5	46
137	Are there non-trivial dynamic cross-correlations in proteins?. <i>Journal of Molecular Biology</i> , 1998 , 279, 911-20	6.5	45
136	Automated structure modeling of large protein assemblies using crosslinks as distance restraints. <i>Nature Methods</i> , 2016 , 13, 515-20	21.6	44
135	Structural insights into serine-rich fimbriae from Gram-positive bacteria. <i>Journal of Biological Chemistry</i> , 2010 , 285, 32446-57	5.4	43
134	Accurate NMR structures through minimization of an extended hybrid energy. Structure, 2008, 16, 130	5-ჭ2	43
133	Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation. <i>PLoS Pathogens</i> , 2015 , 11, e1005162	7.6	42
132	Structure calculation from NMR data. Current Opinion in Structural Biology, 1996, 6, 617-23	8.1	41

131	Distinct docking and stabilization steps of the Pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. <i>Structure</i> , 2014 , 22, 685-96	5.2	40
130	Shelling the Voronoi interface of protein-protein complexes reveals patterns of residue conservation, dynamics, and composition. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 76, 677	- 9 2	39
129	The three-dimensional structure of a type I module from titin: a prototype of intracellular fibronectin type III domains. <i>Structure</i> , 1998 , 6, 1291-302	5.2	39
128	Structure of the calcium-dependent type 2 secretion pseudopilus. <i>Nature Microbiology</i> , 2017 , 2, 1686-16	5 25 .6	38
127	A comparison of the restrained molecular dynamics and distance geometry methods for determining three-dimensional structures of proteins on the basis of interproton distances. <i>FEBS Letters</i> , 1987 , 213, 269-77	3.8	38
126	ARIA for solution and solid-state NMR. <i>Methods in Molecular Biology</i> , 2012 , 831, 453-83	1.4	38
125	A role for specific collagen motifs during wound healing and inflammatory response of fibroblasts in the teleost fish gilthead seabream. <i>Molecular Immunology</i> , 2011 , 48, 826-34	4.3	36
124	Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data. <i>PLoS Computational Biology</i> , 2016 , 12, e1005292	5	36
123	Bat coronaviruses related to SARS-CoV-2 and infectious for human cells <i>Nature</i> , 2022 ,	50.4	36
122	The impact of protein flexibility on protein-protein docking. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 58, 126-33	4.2	35
121	Modeling pilus structures from sparse data. <i>Journal of Structural Biology</i> , 2011 , 173, 436-44	3.4	34
120	Modeling errors in NOE data with a log-normal distribution improves the quality of NMR structures. Journal of the American Chemical Society, 2005 , 127, 16026-7	16.4	34
119	Structure of the histone mRNA hairpin required for cell cycle regulation of histone gene expression. <i>Rna</i> , 2002 , 8, 29-46	5.8	34
118	Calculation of symmetric multimer structures from NMR data using a priori knowledge of the monomer structure, co-monomer restraints, and interface mapping: The case of leucine zippers. <i>Journal of Biomolecular NMR</i> , 1996 , 8, 193-206	3	34
117	Heteronuclear relaxation study of the PH domain of beta-spectrin: restriction of loop motions upon binding inositol trisphosphate. <i>Journal of Molecular Biology</i> , 1998 , 280, 879-96	6.5	33
116	Influence of internal dynamics on accuracy of protein NMR structures: derivation of realistic model distance data from a long molecular dynamics trajectory. <i>Journal of Molecular Biology</i> , 1999 , 285, 727-40	0 ^{6.5}	33
115	Determination of the backbone conformation of secretin by restrained molecular dynamics on the basis of interproton distance data. <i>FEBS Journal</i> , 1988 , 171, 479-84		33
114	An algorithm to enumerate all possible protein conformations verifying a set of distance constraints. <i>BMC Bioinformatics</i> , 2015 , 16, 23	3.6	32

113	Unraveling the symmetry ambiguity in a hexamer: calculation of the R6 human insulin structure. <i>Journal of Biomolecular NMR</i> , 2000 , 16, 93-108	3	32
112	Sequential resonance assignment and secondary structure determination of the Ascaris trypsin inhibitor, a member of a novel class of proteinase inhibitors. <i>Biochemistry</i> , 1990 , 29, 183-9	3.2	31
111	Functional diversity of PH domains: an exhaustive modelling study. Folding & Design, 1997, 2, 343-55		30
110	Quantitative study of the effects of chemical shift tolerances and rates of SA cooling on structure calculation from automatically assigned NOE data. <i>Journal of Magnetic Resonance</i> , 2005 , 175, 92-102	3	30
109	Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins. <i>Journal of Molecular Graphics and Modelling</i> , 2015 , 55, 13-24	2.8	29
108	Influence of different assignment conditions on the determination of symmetric homodimeric structures with ARIA. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 75, 569-85	4.2	29
107	Efficient sampling in collective coordinate space. <i>Proteins: Structure, Function and Bioinformatics</i> , 2000 , 39, 82-8	4.2	29
106	ISD: a software package for Bayesian NMR structure calculation. <i>Bioinformatics</i> , 2008 , 24, 1104-5	7.2	28
105	A simple method for delineating well-defined and variable regions in protein structures determined from interproton distance data. <i>FEBS Letters</i> , 1987 , 219, 11-16	3.8	28
104	SOLARIA: a protocol for automated cross-peak assignment and structure calculation for solid-state magic-angle spinning NMR spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 6151-4	16.4	27
103	Bayesian inference applied to macromolecular structure determination. <i>Physical Review E</i> , 2005 , 72, 03	19.142	27
102	Refinement of the solution structure of the ribonucleotide 5P(GCAUGC)2: combined use of nuclear magnetic resonance and restrained molecular dynamics. <i>Biochemistry</i> , 1988 , 27, 1735-43	3.2	27
101	NMR Exchange Format: a unified and open standard for representation of NMR restraint data. <i>Nature Structural and Molecular Biology</i> , 2015 , 22, 433-4	17.6	26
100	Computational reverse-engineering of a spider-venom derived peptide active against Plasmodium falciparum SUB1. <i>PLoS ONE</i> , 2011 , 6, e21812	3.7	26
99	Refined structure, DNA binding studies, and dynamics of the bacteriophage Pf3 encoded single-stranded DNA binding protein. <i>Biochemistry</i> , 1997 , 36, 9120-35	3.2	25
98	Structure of a PH domain from the C. elegans muscle protein UNC-89 suggests a novel function. <i>Structure</i> , 2000 , 8, 1079-87	5.2	25
97	Refinement of the protein backbone angle psi in NMR structure calculations. <i>Journal of Biomolecular NMR</i> , 2000 , 16, 47-58	3	25
96	Continuum solvent molecular dynamics study of flexibility in interleukin-8. <i>Journal of Molecular Graphics and Modelling</i> , 2001 , 19, 136-45	2.8	24

(2013-2019)

95	Bayesian Weighing of Electron Cryo-Microscopy Data for Integrative Structural Modeling. <i>Structure</i> , 2019 , 27, 175-188.e6	5.2	24
94	Sampling Properties of Simulated Annealing and Distance Geometry 1991 , 451-455		24
93	Solution structure of the 30 kDa polysulfide-sulfur transferase homodimer from Wolinella succinogenes. <i>Biochemistry</i> , 2004 , 43, 1418-24	3.2	23
92	Re-face stereospecificity of methylenetetrahydromethanopterin and methylenetetrahydrofolate dehydrogenases is predetermined by intrinsic properties of the substrate. <i>ChemBioChem</i> , 2001 , 2, 530-4	4¾.8	22
91	Bayesian estimation of Karplus parameters and torsion angles from three-bond scalar couplings constants. <i>Journal of Magnetic Resonance</i> , 2005 , 177, 160-5	3	21
90	Coronaviruses with a SARS-CoV-2-like receptor-binding domain allowing ACE2-mediated entry into human cells isolated from bats of Indochinese peninsula		21
89	Bayesian estimation of NMR restraint potential and weight: a validation on a representative set of protein structures. <i>Proteins: Structure, Function and Bioinformatics</i> , 2011 , 79, 1525-37	4.2	20
88	Molecular dynamics and accuracy of NMR structures: Effects of error bounds and data removal. <i>Proteins: Structure, Function and Bioinformatics</i> , 1999 , 34, 453-463	4.2	20
87	Structure and function of minor pilins of type IV pili. <i>Medical Microbiology and Immunology</i> , 2020 , 209, 301-308	4	20
86	An automatic tool to analyze and cluster macromolecular conformations based on self-organizing maps. <i>Bioinformatics</i> , 2015 , 31, 1490-2	7.2	19
85	Minimal NMR distance information for rigidity of protein graphs. <i>Discrete Applied Mathematics</i> , 2019 , 256, 91-104	1	19
84	Improved reliability, accuracy and quality in automated NMR structure calculation with ARIA. <i>Journal of Biomolecular NMR</i> , 2015 , 62, 425-38	3	18
83	Three dimensional structure and implications for the catalytic mechanism of 6-phosphogluconolactonase from Trypanosoma brucei. <i>Journal of Molecular Biology</i> , 2007 , 366, 868-81	6.5	18
82	Clinical and mutational investigations of tyrosinemia type II in Northern Tunisia: identification and structural characterization of two novel TAT mutations. <i>Molecular Genetics and Metabolism</i> , 2006 , 88, 184-91	3.7	18
81	Functionally important correlated motions in the single-stranded DNA-binding protein encoded by filamentous phage Pf3. <i>Journal of Molecular Biology</i> , 1999 , 287, 569-77	6.5	18
80	Tertiary structure prediction using mean-force potentials and internal energy functions: successful prediction for coiled-coil geometries. <i>Folding & Design</i> , 1997 , 2, S47-52		17
79	Structural Characterization of Whirlin Reveals an Unexpected and Dynamic Supramodule Conformation of Its PDZ Tandem. <i>Structure</i> , 2017 , 25, 1645-1656.e5	5.2	16
78	A convective replica-exchange method for sampling new energy basins. <i>Journal of Computational Chemistry</i> , 2013 , 34, 132-40	3.5	16

77	A unifying probabilistic framework for analyzing residual dipolar couplings. <i>Journal of Biomolecular NMR</i> , 2008 , 40, 135-44	3	16
76	Refined Solution Structure of the Tyr41->His Mutant of the M13 Gene V Protein. <i>FEBS Journal</i> , 1995 , 232, 506-514		16
75	In Silico screening on the three-dimensional model of the Plasmodium vivax SUB1 protease leads to the validation of a novel anti-parasite compound. <i>Journal of Biological Chemistry</i> , 2013 , 288, 18561-73	5.4	15
74	Discrimination of agonists versus antagonists of nicotinic ligands based on docking onto AChBP structures. <i>Journal of Molecular Graphics and Modelling</i> , 2011 , 30, 100-9	2.8	15
73	Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase. <i>Nucleic Acids Research</i> , 2018 , 46, 2660-2677	20.1	14
7 ²	Molecular replacement with NMR models using distance-derived pseudo B factors. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 1996 , 52, 973-82		14
71	Structure and Assembly of the Enterohemorrhagic Escherichia coli Type 4 Pilus. <i>Structure</i> , 2019 , 27, 108	32 5 .12093	3. e ş
70	Identification of novel leishmanicidal molecules by virtual and biochemical screenings targeting Leishmania eukaryotic translation initiation factor 4A. <i>PLoS Neglected Tropical Diseases</i> , 2018 , 12, e0006	s 1 60	13
69	Conformation of secretin in dimethyl sulfoxide solution. NMR studies and restrained molecular dynamics. <i>FEBS Journal</i> , 1989 , 186, 95-103		13
68	Tuning interval Branch-and-Prune for protein structure determination. <i>Journal of Global Optimization</i> , 2018 , 72, 109-127	1.5	12
67	In Silico prediction of the molecular basis of ClTx and AaCTx interaction with matrix metalloproteinase-2 (MMP-2) to inhibit glioma cell invasion. <i>Journal of Biomolecular Structure and Dynamics</i> , 2017 , 35, 2815-2829	3.6	12
66	Stabilization of the integrase-DNA complex by Mg2+ ions and prediction of key residues for binding HIV-1 integrase inhibitors. <i>Proteins: Structure, Function and Bioinformatics</i> , 2014 , 82, 466-78	4.2	12
65	Insights into the enzymatic mechanism of 6-phosphogluconolactonase from Trypanosoma brucei using structural data and molecular dynamics simulation. <i>Journal of Molecular Biology</i> , 2009 , 388, 1009-	·2 ^{4.5}	12
64	Exploring protein interiors: the role of a buried histidine in the KH module fold. <i>Proteins: Structure, Function and Bioinformatics</i> , 1999 , 34, 484-96	4.2	12
63	SAXS Merge: an automated statistical method to merge SAXS profiles using Gaussian processes. Journal of Synchrotron Radiation, 2014 , 21, 203-8	2.4	12
62	Temperature Accelerated Molecular Dynamics with Soft-Ratcheting Criterion Orients Enhanced Sampling by Low-Resolution Information. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 3446-5	54 ^{6.4}	11
61	Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis. <i>BMC Bioinformatics</i> , 2015 , 16, 93	3.6	11
60	Functional motions modulating VanA ligand binding unraveled by self-organizing maps. <i>Journal of Chemical Information and Modeling</i> , 2014 , 54, 289-301	6.1	11

(1993-2006)

59	Error distribution derived NOE distance restraints. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 64, 652-64	4.2	11
58	Target Engagement and Binding Mode of an Antituberculosis Drug to Its Bacterial Target Deciphered in Whole Living Cells by NMR. <i>Biochemistry</i> , 2019 , 58, 526-533	3.2	11
57	ATP conformations and ion binding modes in the active site of anthrax edema factor: a computational analysis. <i>Proteins: Structure, Function and Bioinformatics</i> , 2009 , 77, 971-83	4.2	10
56	NMR in the SPINE Structural Proteomics project. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 2006 , 62, 1150-61		10
55	Influence of Pruning Devices on the Solution of Molecular Distance Geometry Problems. <i>Lecture Notes in Computer Science</i> , 2011 , 206-217	0.9	10
54	Distance Geometry in Structural Biology: New Perspectives 2013 , 329-350		10
53	: Consistent Identification of Plausible Binding Sites Despite the Elusive Nature of Cavities and Grooves in Protein Dynamics. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 3506-3518	6.1	9
52	Solution structure of the coiled-coil trimerization domain from lung surfactant protein D. <i>Journal of Biomolecular NMR</i> , 2002 , 24, 89-102	3	9
51	Computational approaches to the interpretation of NMR data for studying protein dynamics. <i>Chemical Physics</i> , 2012 , 396, 124-134	2.3	8
50	1H and 15N NMR resonance assignments and secondary structure of titin type I domains. <i>Journal of Biomolecular NMR</i> , 1997 , 9, 2-10	3	8
49	Influence of chemical shift tolerances on NMR structure calculations using ARIA protocols for assigning NOE data. <i>Journal of Biomolecular NMR</i> , 2005 , 31, 21-34	3	8
48	NMR studies of the sporulation protein SpoIIAA: implications for the regulation of the transcription factor sigmaF in Bacillus subtilis. <i>Journal of Biomolecular NMR</i> , 2001 , 19, 293-304	3	8
47	Efficient modeling of symmetric protein aggregates from NMR data. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 6916-9	16.4	7
46	Dynamics of a type 2 secretion system pseudopilus unraveled by complementary approaches. <i>Journal of Biomolecular NMR</i> , 2019 , 73, 293-303	3	6
45	Comparison of different torsion angle approaches for NMR structure determination. <i>Journal of Biomolecular NMR</i> , 2006 , 34, 153-66	3	6
44	SOLARIA: A Protocol for Automated Cross-Peak Assignment and Structure Calculation for Solid-State Magic-Angle Spinning NMR Spectroscopy. <i>Angewandte Chemie</i> , 2005 , 117, 6307-6310	3.6	6
43	1H, 15N, and 13C resonance assignment of the PH domain from C. elegans UNC-89. <i>Journal of Biomolecular NMR</i> , 1999 , 15, 269-70	3	6
42	NMR Relaxation Matrix Refinement of a DNA Octamer Solution Structure <i>Acta Chemica Scandinavica</i> , 1993 , 47, 43-56		6

41	Bayesian inference of chromatin structure ensembles from population-averaged contact data. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 7824-7830	11.5	5
40	An Efficient Protocol for NMR-Spectroscopy-Based Structure Determination of Protein Complexes in Solution. <i>Angewandte Chemie</i> , 2010 , 122, 2011-2014	3.6	5
39	SAS profile correlations reveal SAS hierarchical nature and information content. <i>PLoS ONE</i> , 2017 , 12, e0177309	3.7	5
38	quicksom: Self-Organizing Maps on GPUs for clustering of molecular dynamics trajectories. <i>Bioinformatics</i> , 2021 , 37, 2064-2065	7.2	4
37	Graphical analysis of NMR structural quality and interactive contact map of NOE assignments in ARIA. <i>BMC Structural Biology</i> , 2008 , 8, 30	2.7	4
36	Determination of dihedral Psi angles in large proteins by combining NH(N)/C(alpha)H(alpha) dipole/dipole cross-correlation and chemical shifts. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 64, 931-9	4.2	4
35	Three-dimensional structure of the single-stranded DNA-binding protein encoded by gene V of the filamentous bacteriophage M13 and a model of its complex with single-stranded DNA. <i>FEMS Microbiology Reviews</i> , 1995 , 17, 57-72	15.1	4
34	Quantitative Structural Interpretation of Protein Crosslinks. <i>Structure</i> , 2020 , 28, 75-82.e4	5.2	4
33	Building Graphs To Describe Dynamics, Kinetics, and Energetics in the d-ALa:d-Lac Ligase VanA. <i>Journal of Chemical Information and Modeling</i> , 2016 , 56, 1762-75	6.1	4
32	The iPPI-DB initiative: A Community-centered database of Protein-Protein Interaction modulators. <i>Bioinformatics</i> , 2021 ,	7.2	4
31	Convective Replica-Exchange in Ergodic Regimes. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 953-8	6.4	3
30	Protein Structure Calculation using Ambiguous Restraints 2010 ,		3
29	Probabilistic structure calculation. <i>Comptes Rendus Chimie</i> , 2008 , 11, 356-369	2.7	3
28	Calculation of Symmetric Oligomer Structures from NMR Data 2002 , 131-161		3
27	Application of the z-COSY technique with a modified pulse sequence to measurement of coupling constants in macromolecules. <i>Journal of Magnetic Resonance</i> , 1987 , 75, 534-539		3
26	Bayesian weighing of electron cryo-microscopy data for integrative structural modeling		3
25	ARIAweb: a server for automated NMR structure calculation. <i>Nucleic Acids Research</i> , 2020 , 48, W41-W47	7 20.1	3
24	Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. <i>Diagnostics</i> , 2021 , 11,	3.8	3

23	Structural determination of Streptococcus pyogenes M1 protein interactions with human immunoglobulin G using integrative structural biology. <i>PLoS Computational Biology</i> , 2021 , 17, e1008169	,5	3
22	Grid computing for improving conformational sampling in NMR structure calculation. <i>Bioinformatics</i> , 2011 , 27, 1713-4	7.2	2
21	Lobeline Docking on AChBP and Nicotinic Receptors: Discriminating Importance of the Pocket Geometry and of the Ligand Configuration. <i>Letters in Drug Design and Discovery</i> , 2012 , 9, 54-62	0.8	2
20	Protein folding in mode space: a collective coordinate approach to structure prediction. <i>Proteins:</i> Structure, Function and Bioinformatics, 2002 , 49, 365-77	4.2	2
19	Modification in hydrophobic packing of HAMP domain induces a destabilization of the auto-phosphorylation site in the histidine kinase CpxA. <i>Biopolymers</i> , 2016 , 105, 670-82	2.2	2
18	Automatic Building of Protein Atomic Models from Cryo-EM Maps. <i>Biophysical Journal</i> , 2018 , 114, 190a-	1293ja	2
17	InDeep: 3D fully convolutional neural networks to assist in silico drug design on protein-protein interactions <i>Bioinformatics</i> , 2021 ,	7.2	2
16	Computational design of protein-based inhibitors of Plasmodium vivax subtilisin-like 1 protease. <i>PLoS ONE</i> , 2014 , 9, e109269	3.7	1
15	The redundancy of NMR restraints can be used to accelerate the unfolding behavior of an SH3 domain during molecular dynamics simulations. <i>BMC Structural Biology</i> , 2011 , 11, 46	2.7	1
14	StarDOM: from STAR format to XML. <i>Journal of Biomolecular NMR</i> , 1999 , 15, 169-72	3	1
13	Structural Bioinformatics and NMR Structure Determination. <i>Nucleic Acids and Molecular Biology</i> , 2008 , 123-137		1
12	Structure of complement C3(H2O) revealed by quantitative cross-linking/mass spectrometry and model	ling	1
11	Automatic Bayesian Weighting for SAXS Data. Frontiers in Molecular Biosciences, 2021, 8, 671011	5.6	1
10	Conformational sampling of CpxA: Connecting HAMP motions to the histidine kinase function. <i>PLoS ONE</i> , 2018 , 13, e0207899	3.7	1
9	InDeep : 3D fully convolutional neural networks to assist in silico drug design on protein-protein interac	tions	1
8	Computational and biochemical analysis of type IV pilus dynamics and stability. <i>Structure</i> , 2021 , 29, 1397	7 ₅ 1 <u>2</u> 409). e 6
7	Re-Face Stereospecificity of Methylenetetrahydromethanopterin and Methylenetetrahydrofolate Dehydrogenases is Predetermined by Intrinsic Properties of the Substrate 2001 , 2, 530		1

Ordering Protein Contact Matrices. Computational and Structural Biotechnology Journal, 2018, 16, 140-1568

4	SAS Profile Correlations Reveal the Hierarchical Nature of SAS Data and Suggest New Scoring Strategies. <i>Biophysical Journal</i> , 2015 , 108, 45a	2.9
3	Efficient Modeling of Symmetric Protein Aggregates from NMR Data. <i>Angewandte Chemie</i> , 2012 , 124, 7022-7025	3.6
2	Simultaneous use of solution, solid-state NMR and X-ray crystallography to study the conformational landscape of the Crh protein during oligomerization and crystallization. <i>Advances and Applications in Bioinformatics and Chemistry</i> , 2010 , 3, 25-38	1.5
1	Contributory presentations/posters. <i>Journal of Biosciences</i> , 1999 , 24, 33-198	2.3