
Rajeev Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3090118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A vegetative storage protein improves drought tolerance in maize. Plant Biotechnology Journal, 2022, 20, 374-389.	8.3	14
2	GWAS identifies genetic loci underlying nitrogen responsiveness in the climate resilient C4 model Setaria italica (L.). Journal of Advanced Research, 2022, 42, 249-261.	9.5	6
3	Genetic Dissection and Quantitative Trait Loci Mapping of Agronomic and Fodder Quality Traits in Sorghum Under Different Water Regimes. Frontiers in Plant Science, 2022, 13, 810632.	3.6	5
4	Breeding Drought-Tolerant Pearl Millet Using Conventional and Genomic Approaches: Achievements and Prospects. Frontiers in Plant Science, 2022, 13, 781524.	3.6	16
5	Genetic Variation for Nitrogen Use Efficiency Traits in Global Diversity Panel and Parents of Mapping Populations in Pearl Millet. Frontiers in Plant Science, 2021, 12, 625915.	3.6	15
6	Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	29
7	Nitrogen Use Efficiency in Sorghum: Exploring Native Variability for Traits Under Variable N-Regimes. Frontiers in Plant Science, 2021, 12, 643192.	3.6	13
8	Sorghum Pan-Genome Explores the Functional Utility for Genomic-Assisted Breeding to Accelerate the Genetic Gain. Frontiers in Plant Science, 2021, 12, 666342.	3.6	41
9	Genome-Wide Assessment of Population Structure and Genetic Diversity of the Global Finger Millet Germplasm Panel Conserved at the ICRISAT Genebank. Frontiers in Plant Science, 2021, 12, 692463.	3.6	3
10	Genome-Wide Association Studies (GWAS) for Traits Related to Fodder Quality and Biofuel in Sorghum: Progress and Prospects. Protein and Peptide Letters, 2021, 28, 843-854.	0.9	7
11	Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection. Protein and Peptide Letters, 2021, 28, 909-928.	0.9	4
12	Identification of heterotic groups in South-Asian-bred hybrid parents of pearl millet. Theoretical and Applied Genetics, 2020, 133, 873-888.	3.6	15
13	Exploitation of Heterosis in Pearl Millet: A Review. Plants, 2020, 9, 807.	3.5	15
14	Fine-Mapping of Sorghum Stay-Green QTL on Chromosome10 Revealed Genes Associated with Delayed Senescence. Genes, 2020, 11, 1026.	2.4	20
15	A sorghum practical haplotype graph facilitates genomeâ€wide imputation and costâ€effective genomic prediction. Plant Genome, 2020, 13, e20009.	2.8	54
16	Genomic Designing of Pearl Millet: A Resilient Crop for Arid and Semi-arid Environments. , 2020, , 221-286.		22
17	The maize <i>premature senesence2</i> encodes for <i>PHYTOCHROMEâ€DEPENDENT LATEâ€FLOWERING</i> and its expression modulation improves agronomic traits under abiotic stresses. Plant Direct, 2020, 4, e00295.	1.9	3
18	Mapping quantitative trait loci (QTLs) associated with resistance toÂmajor pathotype-isolates ofÂpearl millet downy mildew pathogen. European Journal of Plant Pathology, 2019, 154, 983-994.	1.7	13

RAJEEV GUPTA

#	Article	IF	CITATIONS
19	Chitinase-like1 Plays a Role in Stalk Tensile Strength in Maize. Plant Physiology, 2019, 181, 1127-1147.	4.8	24
20	Discerning combining ability loci for divergent environments using chromosome segment substitution lines (CSSLs) in pearl millet. PLoS ONE, 2019, 14, e0218916.	2.5	12
21	Identification and characterization of a novel stayâ€green <scp>QTL</scp> that increases yield in maize. Plant Biotechnology Journal, 2019, 17, 2272-2285.	8.3	45
22	Genome-Wide Association Studies and Genomic Selection in Pearl Millet: Advances and Prospects. Frontiers in Genetics, 2019, 10, 1389.	2.3	60
23	Genetic variability, genotype × environment interaction and correlation analysis for grain iron and zinc contents in recombinant inbred line population of pearl millet [Pennisetum glaucum (L). R Indian Journal of Genetics and Plant Breeding, 2019, 79, .	0.5	9
24	Phenotypic Data from Inbred Parents Can Improve Genomic Prediction in Pearl Millet Hybrids. G3: Genes, Genomes, Genetics, 2018, 8, 2513-2522.	1.8	41
25	Mapping Grain Iron and Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet. Genes, 2018, 9, 248.	2.4	61
26	Genomic-Assisted Enhancement in Stress Tolerance for Productivity Improvement in Sorghum. , 2018, , 265-288.		2
27	Genomic Approaches to Enhance Stress Tolerance for Productivity Improvements in Pearl Millet. , 2018, , 239-264.		6
28	Towards Defining Heterotic Gene Pools in Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Frontiers in Plant Science, 2017, 8, 1934.	3.6	42
29	Genomic Approaches for Abiotic Stress Tolerance in Sorghum. Compendium of Plant Genomes, 2016, , 169-187.	0.5	8
30	N distribution in maize plant as a marker for grain yield and limits on its remobilization after flowering. Plant Breeding, 2013, 132, 500-505.	1.9	35
31	Maize. , 2012, , 405-432.		3
32	Involvement of the MADS-Box Gene <i>ZMM4</i> in Floral Induction and Inflorescence Development in Maize Â. Plant Physiology, 2008, 147, 2054-2069.	4.8	117