Dirk Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/30893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological Sulfate Reduction in Deep Subseafloor Sediment of Guaymas Basin. Frontiers in Microbiology, 2022, 13, 845250.	1.5	2
2	Impact of Climate and Slope Aspects on the Composition of Soil Bacterial Communities Involved in Pedogenetic Processes along the Chilean Coastal Cordillera. Microorganisms, 2022, 10, 847.	1.6	7
3	Paenalcaligenes niemegkensis sp. nov., a novel species of the family Alcaligenaceae isolated from plastic waste. International Journal of Systematic and Evolutionary Microbiology, 2022, 71, .	0.8	1
4	Nocardioides alcanivorans sp. nov., a novel hexadecane-degrading species isolated from plastic waste. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	6
5	Landslides: An emerging model for ecosystem and soil chronosequence research. Earth-Science Reviews, 2022, 231, 104064.	4.0	10
6	Living Lithic and Sublithic Bacterial Communities in Namibian Drylands. Microorganisms, 2021, 9, 235.	1.6	8
7	Permafrost Carbon and CO2 Pathways Differ at Contrasting Coastal Erosion Sites in the Canadian Arctic. Frontiers in Earth Science, 2021, 9, .	0.8	21
8	Organic matter mineralization in modern and ancient ferruginous sediments. Nature Communications, 2021, 12, 2216.	5.8	25
9	Geochemical Characteristics of Sediment in Tropical Lake Sentani, Indonesia, Are Influenced by Spatial Differences in Catchment Geology and Water Column Stratification. Frontiers in Earth Science, 2021, 9, .	0.8	4
10	Metaplasmidome-encoded functions of Siberian low-centered polygonal tundra soils. ISME Journal, 2021, 15, 3258-3270.	4.4	2
11	Microbial Hotspots in Lithic Microhabitats Inferred from DNA Fractionation and Metagenomics in the Atacama Desert. Microorganisms, 2021, 9, 1038.	1.6	19
12	Evaluating sedimentary DNA for tracing changes in cyanobacteria dynamics from sediments spanning the last 350Âyears of Lake Tiefer See, NE Germany. Journal of Paleolimnology, 2021, 66, 279-296.	0.8	9
13	The Microbiome Associated with the Reef Builder Neogoniolithon sp. in the Eastern Mediterranean. Microorganisms, 2021, 9, 1374.	1.6	3
14	Deep weathering in the semi-arid Coastal Cordillera, Chile. Scientific Reports, 2021, 11, 13057.	1.6	12
15	Influence of prokaryotic microorganisms on initial soil formation along a glacier forefield on King George Island, maritime Antarctica. Scientific Reports, 2021, 11, 13135.	1.6	15
16	Rapid soil and vegetation changes at regional scale in continental Antarctica. Geoderma, 2021, 394, 115017.	2.3	20
17	From Water into Sediment—Tracing Freshwater Cyanobacteria via DNA Analyses. Microorganisms, 2021, 9, 1778	1.6	16
18	Effects of a longâ€ŧerm anoxic warming scenario on microbial community structure and functional potential of permafrostâ€affected soil. Permafrost and Periglacial Processes, 2021, 32, 641-656.	1.5	11

#	Article	IF	CITATIONS
19	The Terrestrial Plastisphere: Diversity and Polymer-Colonizing Potential of Plastic-Associated Microbial Communities in Soil. Microorganisms, 2021, 9, 1876.	1.6	28
20	Species-Level Spatio-Temporal Dynamics of Cyanobacteria in a Hard-Water Temperate Lake in the Southern Baltics. Frontiers in Microbiology, 2021, 12, 761259.	1.5	9
21	Acclimation of a rocky shore algal reef builderNeogoniolithonsp. to changing illuminations. Limnology and Oceanography, 2020, 65, 27-36.	1.6	5
22	Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments. Scientific Reports, 2020, 10, 6.	1.6	30
23	A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water. Science of the Total Environment, 2020, 707, 136087.	3.9	5
24	Microbial Signatures in Deep CO2-Saturated Miocene Sediments of the Active HartouÅjov Mofette System (NW Czech Republic). Frontiers in Microbiology, 2020, 11, 543260.	1.5	5
25	Discovery and Characterization of a New Cold-Active Protease From an Extremophilic Bacterium via Comparative Genome Analysis and in vitro Expression. Frontiers in Microbiology, 2020, 11, 881.	1.5	20
26	Methanogenic response to long-term permafrost thaw is determined by paleoenvironment. FEMS Microbiology Ecology, 2020, 96, .	1.3	23
27	Potentially pathogenic bacteria isolated from diverse habitats in Spitsbergen, Svalbard. Environmental Earth Sciences, 2020, 79, 1.	1.3	11
28	Environmental patterns of brown moss- and Sphagnum-associated microbial communities. Scientific Reports, 2020, 10, 22412.	1.6	9
29	Rapid CO ₂ Release From Eroding Permafrost in Seawater. Geophysical Research Letters, 2019, 46, 11244-11252.	1.5	54
30	Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region. Biogeosciences, 2019, 16, 2481-2499.	1.3	19
31	Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate. Astrobiology, 2019, 19, 197-208.	1.5	14
32	Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiology, 2019, 19, 145-157.	1.5	111
33	Microbial Life Signatures in One of the Driest Areas on Earth - The Atacama Desert. , 2019, , .		Ο
34	Microbial community composition and abundance after millennia of submarine permafrost warming. Biogeosciences, 2019, 16, 3941-3958.	1.3	7
35	Permafrost landslides promote soil CO2 emission and hinder C accumulation. Science of the Total Environment, 2019, 657, 351-364.	3.9	22
36	Transitory microbial habitat in the hyperarid Atacama Desert. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2670-2675.	3.3	172

#	Article	IF	CITATIONS
37	Anaerobic methanotrophic communities thrive in deep submarine permafrost. Scientific Reports, 2018, 8, 1291.	1.6	58
38	Microbial Community Responses to Modern Environmental and Past Climatic Conditions in Omongwa Pan, Western Kalahari: A Paired 16S rRNA Gene Profiling and Lipid Biomarker Approach. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1333-1351.	1.3	15
39	Linkages between geochemistry and microbiology in a proglacial terrain in the High Arctic. Annals of Glaciology, 2018, 59, 95-110.	2.8	11
40	Influence of CO2 Degassing on the Microbial Community in a Dry Mofette Field in HartouÅjov, Czech Republic (Western Eger Rift). Frontiers in Microbiology, 2018, 9, 2787.	1.5	8
41	Desiccation- and Saline-Tolerant Bacteria and Archaea in Kalahari Pan Sediments. Frontiers in Microbiology, 2018, 9, 2082.	1.5	36
42	Metabolic potential of microbial communities from ferruginous sediments. Environmental Microbiology, 2018, 20, 4297-4313.	1.8	33
43	Pedogenic and microbial interrelations to regional climate and local topography: New insights from a climate gradient (arid to humid) along the Coastal Cordillera of Chile. Catena, 2018, 170, 335-355.	2.2	77
44	Chemistry and microbiology of the Critical Zone along a steep climate and vegetation gradient in the Chilean Coastal Cordillera. Catena, 2018, 170, 183-203.	2.2	64
45	Identification of a novel fatty acid in the cell membrane of Chryseobacterium frigidisoli PB4 T isolated from an East Antarctic glacier forefield. Organic Geochemistry, 2017, 106, 68-75.	0.9	7
46	Present and past microbial life in continental pan sediments and its response to climate variability in the southern Kalahari. Organic Geochemistry, 2017, 108, 30-42.	0.9	16
47	A simple and inexpensive technique for assessing contamination during drilling operations. Limnology and Oceanography: Methods, 2017, 15, 200-211.	1.0	27
48	In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biology and Biochemistry, 2017, 111, 66-77.	4.2	36
49	Effect of varying soil water potentials on methanogenesis in aerated marshland soils. Scientific Reports, 2017, 7, 14706.	1.6	24
50	The development of permafrost bacterial communities under submarine conditions. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1689-1704.	1.3	21
51	Editorial: Polar and Alpine Microbiology—Earth's cryobiosphere. FEMS Microbiology Ecology, 2017, 93, fiw221.	1.3	9
52	Community structure of rare methanogenic archaea: insight from a single functional group. FEMS Microbiology Ecology, 2017, 93, .	1.3	16
53	Cell Membrane Fatty Acid Composition of Chryseobacterium frigidisoli PB4T, Isolated from Antarctic Glacier Forefield Soils, in Response to Changing Temperature and pH Conditions. Frontiers in Microbiology, 2017, 8, 677.	1.5	61
54	Global Biogeographic Analysis of Methanogenic Archaea Identifies Community-Shaping Environmental Factors of Natural Environments. Frontiers in Microbiology, 2017, 8, 1339.	1.5	70

#	Article	IF	CITATIONS
55	Preservation and Significance of Extracellular DNA in Ferruginous Sediments from Lake Towuti, Indonesia. Frontiers in Microbiology, 2017, 8, 1440.	1.5	81
56	Microbiological and Geochemical Survey of CO2-Dominated Mofette and Mineral Waters of the Cheb Basin, Czech Republic. Frontiers in Microbiology, 2017, 8, 2446.	1.5	43
57	Effect of salinity on microbial methane oxidation in freshwater and marine environments. Aquatic Microbial Ecology, 2017, 80, 181-192.	0.9	17
58	Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf. Biogeosciences, 2016, 13, 4899-4914.	1.3	16
59	Geomicrobiological Features of Ferruginous Sediments from Lake Towuti, Indonesia. Frontiers in Microbiology, 2016, 7, 1007.	1.5	47
60	Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta, Northeast Siberia. FEMS Microbiology Ecology, 2016, 92, fiw116.	1.3	16
61	Planetary Protection and Mars Special Regions—A Suggestion for Updating the Definition. Astrobiology, 2016, 16, 119-125.	1.5	36
62	Propidium monoazide treatment to distinguish between live and dead methanogens in pure cultures and environmental samples. Journal of Microbiological Methods, 2016, 121, 11-23.	0.7	32
63	Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost. Frontiers in Microbiology, 2015, 6, 356.	1.5	53
64	Enhanced Radiation Resistance of <i>Methanosarcina soligelidi</i> SMA-21, a New Methanogenic Archaeon Isolated from a Siberian Permafrost-Affected Soil in Direct Comparison to <i>Methanosarcina barkeri</i> . Astrobiology, 2015, 15, 951-960.	1.5	13
65	Genome Sequence of Methanosarcina soligelidi SMA-21, Isolated from Siberian Permafrost-Affected Soil. Genome Announcements, 2015, 3, .	0.8	7
66	Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation. Frontiers in Microbiology, 2015, 6, 210.	1.5	25
67	Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea). Estuarine, Coastal and Shelf Science, 2015, 160, 10-21.	0.9	46
68	Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil. FEMS Microbiology Ecology, 2015, 91, fiv126.	1.3	10
69	Methanosarcina spelaei sp. nov., a methanogenic archaeon isolated from a floating biofilm of a subsurface sulphurous lake. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3478-3484.	0.8	43
70	Impact of Lake-Level and Climate Changes on Microbial Communities in a Terrestrial Permafrost Sequence of the El'gygytgyn Crater, Far East Russian Arctic. Permafrost and Periglacial Processes, 2014, 25, 107-116.	1.5	14
71	Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. FEMS Microbiology Ecology, 2014, 89, 426-441.	1.3	77
72	Bacterial community structure in soils of the Tibetan Plateau affected by discontinuous permafrost or seasonal freezing. Biology and Fertility of Soils, 2014, 50, 555-559.	2.3	15

#	Article	IF	CITATIONS
73	Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 522-527.	0.8	44
74	Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions. Planetary and Space Science, 2014, 98, 198-204.	0.9	24
75	Single-cell analysis of the methanogenic archaeon Methanosarcina soligelidi from Siberian permafrost by means of confocal Raman microspectrocopy for astrobiological research. Planetary and Space Science, 2014, 98, 191-197.	0.9	18
76	Taxonomic database and cut-off value for processing mcrA gene 454 pyrosequencing data by MOTHUR. Journal of Microbiological Methods, 2014, 103, 3-5.	0.7	93
77	Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic. PLoS ONE, 2014, 9, e84761.	1.1	79
78	Predicting longâ€ŧerm carbon mineralization and trace gas production from thawing permafrost of <scp>N</scp> ortheast <scp>S</scp> iberia. Global Change Biology, 2013, 19, 1160-1172.	4.2	161
79	Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2986-2991.	0.8	74
80	Bacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica. FEMS Microbiology Ecology, 2013, 85, 128-142.	1.3	113
81	Chryseobacterium frigidisoli sp. nov., a psychrotolerant species of the family Flavobacteriaceae isolated from sandy permafrost from a glacier forefield. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2666-2671.	0.8	23
82	Eger Rift ICDP: an observatory for study of non-volcanic, mid-crustal earthquake swarms and accompanying phenomena. Scientific Drilling, 2013, 16, 93-99.	1.0	21
83	Herbaspirillum psychrotolerans sp. nov., a member of the family Oxalobacteraceae from a glacier forefield. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3197-3203.	0.8	31
84	Response of methanogenic archaea to Late Pleistocene and Holocene climate changes in the Siberian Arctic. Global Biogeochemical Cycles, 2013, 27, 305-317.	1.9	42
85	Polar and alpine microbiology. FEMS Microbiology Ecology, 2012, 82, 215-216.	1.3	5
86	Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planetary and Space Science, 2012, 74, 103-110.	0.9	77
87	Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME Journal, 2012, 6, 709-712.	4.4	153
88	Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of <i>mcrA</i> and <i>pmoA</i> genes. FEMS Microbiology Ecology, 2012, 82, 287-302.	1.3	72
89	Habitable periglacial landscapes in martian mid-latitudes. Icarus, 2012, 219, 345-357.	1.1	36
90	Cryobacterium arcticum sp. nov., a psychrotolerant bacterium from an Arctic soil. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1849-1853.	0.8	42

#	Article	IF	CITATIONS
91	Arthrobacter livingstonensis sp. nov. and Arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from Antarctic soil. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 979-984.	0.8	48
92	Life and applications of extremophiles. Environmental Microbiology, 2011, 13, 1903-1907.	1.8	49
93	Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. Journal of Ecology, 2011, 99, 914-922.	1.9	91
94	The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. FEMS Microbiology Ecology, 2011, 76, 476-491.	1.3	107
95	Leifsonia psychrotolerans sp. nov., a psychrotolerant species of the family Microbacteriaceae from Livingston Island, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1938-1943.	0.8	27
96	Thermal state of permafrost and activeâ€layer monitoring in the antarctic: Advances during the international polar year 2007–2009. Permafrost and Periglacial Processes, 2010, 21, 182-197.	1.5	167
97	Lateglacial and Holocene isotopic and environmental history of northern coastal Alaska – Results from a buried ice-wedge system at Barrow. Quaternary Science Reviews, 2010, 29, 3720-3735.	1.4	58
98	Permafrost – Current and Future Challenges to Study Methanotrophy in Permafrost Affected Tundra and Wetlands. , 2010, , 2173-2179.		2
99	Methanogenesis in Arctic Permafrost Habitats. , 2010, , 655-663.		9
100	Microcosm Experiments for Simulation of Freeze-Thaw Cycles and Studying Methane Dynamics in Permafrost-Affected Soils. , 2010, , 3453-3460.		1
101	Diversity of Aerobic Methanotrophic Bacteria in a Permafrost Active Layer Soil of the Lena Delta, Siberia. Microbial Ecology, 2009, 57, 25-35.	1.4	96
102	Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea. Environmental Microbiology, 2009, 11, 657-668.	1.8	48
103	Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions. Remote Sensing of Environment, 2009, 113, 380-391.	4.6	123
104	Temperature adaptation of microbial communities in different horizons of Siberian permafrost-affected soils from the Lena Delta. Chemie Der Erde, 2009, 69, 169-182.	0.8	29
105	Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern SiberiaThis article is one of a selection of papers in the Special Issue on Polar and Alpine Microbiology Canadian Journal of Microbiology, 2009, 55, 73-83.	0.8	62
106	Clobal Warming and Carbon Dynamics in Permafrost Soils: Methane Production and Oxidation. Soil Biology, 2009, , 219-236.	0.6	23
107	Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling. Global Change Biology, 2008, 14, 1395-1408.	4.2	224
108	Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica, Geoderma, 2008, 144, 50-65.	2.3	84

#	Article	IF	CITATIONS
109	Microbial Communities and Processes in Arctic Permafrost Environments. Soil Biology, 2008, , 133-154.	0.6	37
110	The use of GPR to detect active layers in young periglacial terrain of Livingston Island, Maritime Antarctica. Near Surface Geophysics, 2008, 6, 331-336.	0.6	18
111	Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia. International Microbiology, 2008, 11, 195-202.	1.1	59
112	Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environmental Microbiology, 2007, 9, 107-117.	1.8	96
113	Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget. Global Change Biology, 2007, 13, 1089-1099.	4.2	121
114	Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiology Ecology, 2007, 59, 476-488.	1.3	100
115	Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. FEMS Microbiology Ecology, 2007, 61, 16-25.	1.3	72
116	Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions. Origins of Life and Evolution of Biospheres, 2007, 37, 189-200.	0.8	65
117	Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget. Global Change Biology, 2007, .	4.2	1
118	Two temperature optima of methane production in a typical soil of the Elbe river marshland. FEMS Microbiology Ecology, 2006, 22, 145-153.	1.3	37
119	Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environmental Microbiology, 2005, 7, 1582-1592.	1.8	146
120	Element Redistribution along Hydraulic and Redox Gradients of Lowâ€Centered Polygons, Lena Delta, Northern Siberia. Soil Science Society of America Journal, 2004, 68, 1002-1011.	1.2	50
121	Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry, 2004, 69, 341-362.	1.7	207
122	Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiology Ecology, 2004, 50, 13-23.	1.3	90
123	Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafrost and Periglacial Processes, 2003, 14, 173-185.	1.5	108
124	Simulation of freezing-thawing cycles in a permafrost microcosm for assessing microbial methane production under extreme conditions. Permafrost and Periglacial Processes, 2003, 14, 367-374.	1.5	11
125	Microbial Life in Terrestrial Permafrost: Methanogenesis and Nitrification in Gelisols as Potentials for Exobiological Process. , 2002, , 143-159.		7
126	Methane production in aerated marshland and model soils: effects of microflora and soil texture. Soil Biology and Biochemistry, 1999, 31, 999-1006.	4.2	54

#	Article	IF	CITATIONS
127	Microbial Carbon Cycling in Permafrost. , 0, , 181-199.		1
128	Workshop to develop deep-life continental scientific drilling projects. Scientific Drilling, 0, 19, 43-53.	1.0	5
129	Drilling into an active mofette: pilot-hole study of the impact of CO ₂ -rich mantle-derived fluids on the geo–bio interaction in the western Eger Rift (Czech Republic). Scientific Drilling, 0, 23, 13-27.	1.0	34