## Oleg A Igoshin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3089292/publications.pdf

Version: 2024-02-01



OLEC A LOOSHIN

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bacillus subtilis Histidine Kinase KinC Activates Biofilm Formation by Controlling Heterogeneity of<br>Single-Cell Responses. MBio, 2022, 13, e0169421.                                           | 1.8 | 9         |
| 2  | Clinically translatable cytokine delivery platform for eradication of intraperitoneal tumors. Science<br>Advances, 2022, 8, eabm1032.                                                             | 4.7 | 35        |
| 3  | The energy cost and optimal design of networks for biological discrimination. Journal of the Royal Society Interface, 2022, 19, 20210883.                                                         | 1.5 | 10        |
| 4  | Overlaid positive and negative feedback loops shape dynamical properties of PhoPQ two-component system. PLoS Computational Biology, 2021, 17, e1008130.                                           | 1.5 | 12        |
| 5  | Chaperone-Mediated Stress Sensing in Mycobacterium tuberculosis Enables Fast Activation and Sustained Response. MSystems, 2021, 6, .                                                              | 1.7 | 6         |
| 6  | Theoretical Analysis Reveals the Cost and Benefit of Proofreading in Coronavirus Genome Replication.<br>Journal of Physical Chemistry Letters, 2021, 12, 2691-2698.                               | 2.1 | 4         |
| 7  | A synthetic circuit for buffering gene dosage variation between individual mammalian cells. Nature<br>Communications, 2021, 12, 4132.                                                             | 5.8 | 9         |
| 8  | Quantification of Myxococcus xanthus Aggregation and Rippling Behaviors: Deep-Learning<br>Transformation of Phase-Contrast into Fluorescence Microscopy Images. Microorganisms, 2021, 9,<br>1954. | 1.6 | 0         |
| 9  | Independent control of mean and noise by convolution of gene expression distributions. Nature Communications, 2021, 12, 6957.                                                                     | 5.8 | 3         |
| 10 | Emergent Myxobacterial Behaviors Arise from Reversal Suppression Induced by Kin Contacts.<br>MSystems, 2021, 6, e0072021.                                                                         | 1.7 | 3         |
| 11 | Bacteriophage self-counting in the presence of viral replication. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                   | 3.3 | 8         |
| 12 | Title is missing!. , 2021, 17, e1008130.                                                                                                                                                          |     | 0         |
| 13 | Title is missing!. , 2021, 17, e1008130.                                                                                                                                                          |     | 0         |
| 14 | Title is missing!. , 2021, 17, e1008130.                                                                                                                                                          |     | 0         |
| 15 | Title is missing!. , 2021, 17, e1008130.                                                                                                                                                          |     | 0         |
| 16 | Data-Driven Models Reveal Mutant Cell Behaviors Important for Myxobacterial Aggregation.<br>MSystems, 2020, 5, .                                                                                  | 1.7 | 6         |
| 17 | Do We Understand the Mechanisms Used by Biological Systems to Correct Their Errors?. Journal of<br>Physical Chemistry B, 2020, 124, 9289-9296.                                                    | 1.2 | 9         |
| 18 | Metabolic stress promotes stop-codon readthrough and phenotypic heterogeneity. Proceedings of the<br>National Academy of Sciences of the United States of America, 2020, 117, 22167-22172.        | 3.3 | 19        |

OLEG A IGOSHIN

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Trade-Offs between Speed, Accuracy, and Dissipation in tRNA <sup>Ile</sup> Aminoacylation. Journal of Physical Chemistry Letters, 2020, 11, 4001-4007.                                                                                  | 2.1 | 8         |
| 20 | Kinetic control of stationary flux ratios for a wide range of biochemical processes. Proceedings of the United States of America, 2020, 117, 8884-8889.                                                                                 | 3.3 | 5         |
| 21 | A synthetic system for asymmetric cell division in Escherichia coli. Nature Chemical Biology, 2019, 15, 917-924.                                                                                                                        | 3.9 | 29        |
| 22 | Biophysics at the coffee shop: lessons learned working with George Oster. Molecular Biology of the<br>Cell, 2019, 30, 1882-1889.                                                                                                        | 0.9 | 4         |
| 23 | Optogenetic control of Bacillus subtilis gene expression. Nature Communications, 2019, 10, 3099.                                                                                                                                        | 5.8 | 69        |
| 24 | An Engineered <i>B.Âsubtilis</i> Inducible Promoter System with over 10†000-Fold Dynamic Range. ACS<br>Synthetic Biology, 2019, 8, 1673-1678.                                                                                           | 1.9 | 35        |
| 25 | Trade-Offs between Error, Speed, Noise, and Energy Dissipation in Biological Processes with<br>Proofreading. Journal of Physical Chemistry B, 2019, 123, 4718-4725.                                                                     | 1.2 | 33        |
| 26 | Systematic analysis of the <i>Myxococcus xanthus</i> developmental gene regulatory network<br>supports posttranslational regulation of FruA by Câ€signaling. Molecular Microbiology, 2019, 111,<br>1732-1752.                           | 1.2 | 7         |
| 27 | Dynamics of Bacterial Gene Regulatory Networks. Annual Review of Biophysics, 2018, 47, 447-467.                                                                                                                                         | 4.5 | 20        |
| 28 | Agent-Based Modeling Reveals Possible Mechanisms for Observed Aggregation CellÂBehaviors.<br>Biophysical Journal, 2018, 115, 2499-2511.                                                                                                 | 0.2 | 16        |
| 29 | Elucidating interplay of speed and accuracy in biological error correction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5183-5188.                                                      | 3.3 | 75        |
| 30 | Data-driven modeling reveals cell behaviors controlling self-organization during <i>Myxococcus<br/>xanthus</i> development. Proceedings of the National Academy of Sciences of the United States of<br>America, 2017, 114, E4592-E4601. | 3.3 | 35        |
| 31 | Accuracy of Substrate Selection by Enzymes Is Controlled by Kinetic Discrimination. Journal of Physical Chemistry Letters, 2017, 8, 1552-1556.                                                                                          | 2.1 | 16        |
| 32 | Heterogeneity of Stop Codon Readthrough in Single Bacterial Cells and Implications for Population<br>Fitness. Molecular Cell, 2017, 67, 826-836.e5.                                                                                     | 4.5 | 40        |
| 33 | On the mechanism of long-range orientational order of fibroblasts. Proceedings of the National<br>Academy of Sciences of the United States of America, 2017, 114, 8974-8979.                                                            | 3.3 | 48        |
| 34 | Modeling mechanical interactions in growing populations of rod-shaped bacteria. Physical Biology, 2017, 14, 055001.                                                                                                                     | 0.8 | 31        |
| 35 | Mechanism of Kin-Discriminatory Demarcation Line Formation between Colonies of Swarming Bacteria. Biophysical Journal, 2017, 113, 2477-2486.                                                                                            | 0.2 | 11        |
| 36 | Non-monotonic Response to Monotonic Stimulus: Regulation of Glyoxylate Shunt Gene-Expression Dynamics in Mycobacterium tuberculosis. PLoS Computational Biology, 2016, 12, e1004741.                                                    | 1.5 | 30        |

OLEG A IGOSHIN

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and<br>Exopolysaccharide Production. PLoS Computational Biology, 2016, 12, e1005010.                                                    | 1.5  | 13        |
| 38 | Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor<br>Networks. PLoS Computational Biology, 2016, 12, e1005267.                                                                           | 1.5  | 8         |
| 39 | FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry<br>Data from Arbitrary to Calibrated Units. ACS Synthetic Biology, 2016, 5, 774-780.                                                | 1.9  | 108       |
| 40 | Functional requirements of cellular differentiation: lessons from Bacillus subtilis. Current Opinion in Microbiology, 2016, 34, 38-46.                                                                                              | 2.3  | 23        |
| 41 | Slowdown of growth controls cellularÂdifferentiation. Molecular Systems Biology, 2016, 12, 871.                                                                                                                                     | 3.2  | 33        |
| 42 | The <scp>P</scp> sp system of <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> integrates<br>envelope stressâ€sensing and envelopeâ€preserving functions. Molecular Microbiology, 2015, 97, 408-422.                            | 1.2  | 42        |
| 43 | How to train your microbe: methods for dynamically characterizing gene networks. Current Opinion in Microbiology, 2015, 24, 113-123.                                                                                                | 2.3  | 27        |
| 44 | Chromosomal Arrangement of Phosphorelay Genes Couples Sporulation and DNA Replication. Cell, 2015, 162, 328-337.                                                                                                                    | 13.5 | 79        |
| 45 | Mechanism for Collective Cell Alignment in Myxococcus xanthus Bacteria. PLoS Computational<br>Biology, 2015, 11, e1004474.                                                                                                          | 1.5  | 39        |
| 46 | Myxococcus xanthus Gliding Motors Are Elastically Coupled to the Substrate as Predicted by the Focal Adhesion Model of Gliding Motility. PLoS Computational Biology, 2014, 10, e1003619.                                            | 1.5  | 45        |
| 47 | Unraveling the regulatory connections between two controllers of breast cancer cell fate. Nucleic<br>Acids Research, 2014, 42, 6839-6849.                                                                                           | 6.5  | 10        |
| 48 | Tunable Protease-Activatable Virus Nanonodes. ACS Nano, 2014, 8, 4740-4746.                                                                                                                                                         | 7.3  | 44        |
| 49 | Triggering sporulation in <i><scp>B</scp>acillus subtilis</i> with artificial twoâ€component systems reveals the importance of proper <scp>Spo</scp> 0 <scp>A</scp> activation dynamics. Molecular Microbiology, 2013, 90, 181-194. | 1.2  | 39        |
| 50 | Mathematical model of a gene regulatory network reconciles effects of genetic perturbations on hematopoietic stem cell emergence. Developmental Biology, 2013, 379, 258-269.                                                        | 0.9  | 21        |
| 51 | The Mechanistic Basis of Myxococcus xanthus Rippling Behavior and Its Physiological Role during<br>Predation. PLoS Computational Biology, 2012, 8, e1002715.                                                                        | 1.5  | 40        |
| 52 | Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain<br>and switching times. Physical Biology, 2012, 9, 055003.                                                                     | 0.8  | 37        |
| 53 | Ultrasensitivity of the <i>Bacillus subtilis</i> sporulation decision. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3513-22.                                                        | 3.3  | 62        |
| 54 | Interplay of Gene Expression Noise and Ultrasensitive Dynamics Affects Bacterial Operon<br>Organization. PLoS Computational Biology, 2012, 8, e1002672.                                                                             | 1.5  | 23        |

Oleg A Igoshin

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Non-transcriptional regulatory processes shape transcriptional network dynamics. Nature Reviews<br>Microbiology, 2011, 9, 817-828.                                                                                       | 13.6 | 46        |
| 56 | Bistable responses in bacterial genetic networks: Designs and dynamical consequences. Mathematical<br>Biosciences, 2011, 231, 76-89.                                                                                     | 0.9  | 60        |
| 57 | Quantifying Aggregation Dynamics during Myxococcus xanthus Development. Journal of<br>Bacteriology, 2011, 193, 5164-5170.                                                                                                | 1.0  | 21        |
| 58 | Statistical image analysis reveals features affecting fates of Myxococcus xanthus developmental<br>aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108,<br>5915-5920. | 3.3  | 35        |
| 59 | Thermodynamic models of combinatorial gene regulation by distant enhancers. IET Systems Biology, 2010, 4, 393-408.                                                                                                       | 0.8  | 17        |
| 60 | The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response. Physical Biology, 2010, 7, 036005.                                                    | 0.8  | 57        |
| 61 | Single-cell measurement of the levels and distributions of the phosphorelay components in a population of sporulating Bacillus subtilis cells. Microbiology (United Kingdom), 2010, 156, 2294-2304.                      | 0.7  | 31        |
| 62 | Modeling Reveals Bistability and Low-Pass Filtering in the Network Module Determining Blood Stem<br>Cell Fate. PLoS Computational Biology, 2010, 6, e1000771.                                                            | 1.5  | 53        |
| 63 | Adaptable Functionality of Transcriptional Feedback in Bacterial Two-Component Systems. PLoS<br>Computational Biology, 2010, 6, e1000676.                                                                                | 1.5  | 53        |
| 64 | Dynamic Disorder in Quasi-Equilibrium Enzymatic Systems. PLoS ONE, 2010, 5, e12364.                                                                                                                                      | 1.1  | 15        |
| 65 | Dynamic Disorder-Driven Substrate Inhibition and Bistability in a Simple Enzymatic Reaction. Journal of<br>Physical Chemistry B, 2009, 113, 13421-13428.                                                                 | 1.2  | 11        |
| 66 | Hysteretic and graded responses in bacterial two-component signal transduction. Molecular<br>Microbiology, 2008, 68, 1196-1215.                                                                                          | 1.2  | 60        |
| 67 | Transient heterogeneity in extracellular protease production by <i>Bacillus subtilis</i> . Molecular Systems Biology, 2008, 4, 184.                                                                                      | 3.2  | 181       |
| 68 | Distinctive Topologies of Partner-switching Signaling Networks Correlate with their Physiological<br>Roles. Journal of Molecular Biology, 2007, 369, 1333-1352.                                                          | 2.0  | 44        |
| 69 | Signalling network with a bistable hysteretic switch controls developmental activation of the<br>ÏfFtranscription factor inBacillus subtilis. Molecular Microbiology, 2006, 61, 165-184.                                 | 1.2  | 42        |
| 70 | Waves and aggregation patterns in myxobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4256-4261.                                                                   | 3.3  | 97        |
| 71 | Developmental waves in myxobacteria: A distinctive pattern formation mechanism. Physical Review E, 2004, 70, 041911.                                                                                                     | 0.8  | 17        |
| 72 | A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during<br>development. Proceedings of the National Academy of Sciences of the United States of America, 2004,<br>101, 15760-15765.      | 3.3  | 97        |

Oleg A Igoshin

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Breaking symmetry in myxobacteria. Current Biology, 2004, 14, R459-R462.                                                                                                            | 1.8 | 15        |
| 74 | Rippling of myxobacteria. Mathematical Biosciences, 2004, 188, 221-233.                                                                                                             | 0.9 | 14        |
| 75 | The Motility of Mollicutes. Biophysical Journal, 2003, 85, 828-842.                                                                                                                 | 0.2 | 34        |
| 76 | Instantaneous and Permanent Photoionization. Journal of Physical Chemistry A, 2001, 105, 19-28.                                                                                     | 1.1 | 5         |
| 77 | Pattern formation and traveling waves in myxobacteria: Theory and modeling. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14913-14918. | 3.3 | 129       |
| 78 | Differential approach to the memory-function reaction kinetics. Chemical Physics Letters, 2000, 317, 481-489.                                                                       | 1.2 | 16        |
| 79 | Quenching of fluorescence by irreversible energy transfer at arbitrary strong pumping light. Journal of Luminescence, 2000, 92, 123-132.                                            | 1.5 | 13        |
| 80 | The effect of chemical displacement of B species in the reaction A+B→B. Physica A: Statistical Mechanics and Its Applications, 2000, 275, 99-133.                                   | 1.2 | 14        |
| 81 | Impurity quenching of fluorescence in intense light. Violation of the Stern–Volmer law. Journal of Chemical Physics, 2000, 112, 10930-10940.                                        | 1.2 | 13        |
| 82 | Photoconductivity and singlet oxygen generation in illuminated polymer in the air atmosphere.<br>Journal of Chemical Physics, 1999, 111, 2200-2209.                                 | 1.2 | 7         |
| 83 | A new approach to the derivation of binary non-Markovian kinetic equations. Physica A: Statistical<br>Mechanics and Its Applications, 1999, 268, 567-606.                           | 1.2 | 40        |
| 84 | Many-particle treatment of nonuniform reacting systems A+B→C and A+B→C+D in liquid solutions.<br>Chemical Physics, 1999, 244, 371-385.                                              | 0.9 | 28        |
| 85 | Integral, unified and Markovian theories of biexcitonic photoionization. Chemical Physics, 1999, 247, 261-273.                                                                      | 0.9 | 11        |