
Lidia S Shul'pina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3089040/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-catalyzed hydrocarbon oxygenations in solutions: the dramatic role of additives: a review. Journal of Molecular Catalysis A, 2002, 189, 39-66.	4.8	471
2	Metal-catalysed hydrocarbon oxidations. Comptes Rendus Chimie, 2003, 6, 163-178.	0.5	227
3	Oxidations by the reagent "O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid'. Part 12. Ma features, kinetics and mechanism of alkane hydroperoxidationâ€. Perkin Transactions II RSC, 2001, , 1351-1371.	in 1.1	195
4	New Trends in Oxidative Functionalization of Carbon–Hydrogen Bonds: A Review. Catalysts, 2016, 6, 50.	3.5	167
5	Oxidations by the system "hydrogen peroxide–manganese(IV) complex–carboxylic acid― Journal of Molecular Catalysis A, 2001, 170, 17-34.	4.8	157
6	Mechanism of oxidations with H2O2 catalyzed by vanadate anion or oxovanadium(V) triethanolaminate (vanadatrane) in combination with pyrazine-2-carboxylic acid (PCA): Kinetic and DFT studies. Journal of Catalysis, 2009, 267, 140-157.	6.2	150
7	Pyrazinecarboxylic acid and analogs: Highly efficient co-catalysts in the metal-complex-catalyzed oxidation of organic compounds. Coordination Chemistry Reviews, 2013, 257, 732-754.	18.8	138
8	Remarkably fast oxidation of alkanes by hydrogen peroxide catalyzed by a tetracopper(II) triethanolaminate complex: Promoting effects of acid co-catalysts and water, kinetic and mechanistic features. Journal of Catalysis, 2009, 268, 26-38.	6.2	131
9	Extremely Efficient Alkane Oxidation by a New Catalytic Reagent H ₂ O ₂ /Os ₃ (CO) ₁₂ /Pyridine. Inorganic Chemistry, 2009, 48, 10480-10482.	4.0	130
10	Heterometallic Co ^{III} ₄ Fe ^{III} ₂ Schiff Base Complex: Structure, Electron Paramagnetic Resonance, and Alkane Oxidation Catalytic Activity. Inorganic Chemistry, 2012, 51, 9110-9122.	4.0	126
11	Participation of Oligovanadates in Alkane Oxidation with H ₂ O ₂ Catalyzed by Vanadate Anion in Acidified Acetonitrile: Kinetic and DFT Studies. ACS Catalysis, 2011, 1, 1511-1520.	11.2	98
12	Mild homogeneous oxidation of alkanes and alcohols including glycerol with tert-butyl hydroperoxide catalyzed by a tetracopper(II) complex. Journal of Catalysis, 2010, 272, 9-17.	6.2	85
13	Alkane oxidation with hydrogen peroxide catalyzed homogeneously by vanadium-containing polyphosphomolybdates. Applied Catalysis A: General, 2001, 217, 111-117.	4.3	77
14	Alkane oxidation by the H2O2–NaVO3–H2SO4 system in acetonitrile and water. Tetrahedron, 2009, 65, 2424-2429.	1.9	76
15	Generation of HO [•] Radical from Hydrogen Peroxide Catalyzed by Aqua Complexes of the Group III Metals [M(H ₂ O) _{<i>n</i>}] ³⁺ (M = Ga, In, Sc, Y, or La): A Theoretical Study. ACS Catalysis, 2013, 3, 1195-1208.	11.2	76
16	Catalytic oxidation of methane to methyl hydroperoxide and other oxygenates under mild conditions. Chemical Communications, 1997, , 397-398.	4.1	74
17	Oxidations by the reagent "O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid― Journal of Molecular Catalysis A, 2005, 227, 247-253.	4.8	72
18	Mild oxidative functionalization of alkanes and alcohols catalyzed by new mono- and dicopper(II) aminopolyalcoholates. Journal of Molecular Catalysis A, 2011, 350, 26-34.	4.8	72

#	Article	IF	CITATIONS
19	Oxidative functionalisation of alkanes: synthesis, molecular structure and catalytic implications of anionic vanadium(V) oxo and peroxo complexes containing bidentate N,O ligands â€. Journal of the Chemical Society Dalton Transactions, 1999, , 3169-3175.	1.1	71
20	Mono and oligonuclear vanadium complexes as catalysts for alkane oxidation: synthesis, molecular structure, and catalytic potential. Inorganica Chimica Acta, 2004, 357, 475-484.	2.4	71
21	Solvent-controlled synthesis of tetranuclear cage-like copper(<scp>ii</scp>) silsesquioxanes. Remarkable features of the cage structures and their high catalytic activity in oxidation with peroxides. Dalton Transactions, 2014, 43, 872-882.	3.3	69
22	Copper(<scp>ii</scp>) complexes of functionalized 2,2′:6′,2′′-terpyridines and 2,6-di(thiazol-2-yl)pyric structure, spectroscopy, cytotoxicity and catalytic activity. Dalton Transactions, 2017, 46, 9591-9604.	line: 3.3	69
23	Cageâ€like Copper(II) Silsesquioxanes: Transmetalation Reactions and Structural, Quantum Chemical, and Catalytic Studies. Chemistry - A European Journal, 2015, 21, 8758-8770.	3.3	65
24	Mechanism of Al ³⁺ -Catalyzed Oxidations of Hydrocarbons: Dramatic Activation of H ₂ O ₂ toward Oâ~O Homolysis in Complex [Al(H ₂ O) ₄ (OOH)(H ₂ O ₂)] ²⁺ Explains the Formation of HO [•] Radicals. Inorganic Chemistry, 2011, 50, 3996-4005.	4.0	63
25	Hydroperoxidation of alkanes with hydrogen peroxide catalyzed by aluminium nitrate in acetonitrile. Tetrahedron Letters, 2008, 49, 6693-6697.	1.4	57
26	A hydroperoxo-rebound mechanism of alkane oxidation with hydrogen peroxide catalyzed by binuclear manganese(IV) complex in the presence of an acid with involvement of atmospheric dioxygen. Inorganica Chimica Acta, 2017, 455, 666-676.	2.4	56
27	Unusual Tri-, Hexa-, and Nonanuclear Cu(II) Cage Methylsilsesquioxanes: Synthesis, Structures, and Catalytic Activity in Oxidations with Peroxides. Inorganic Chemistry, 2017, 56, 4093-4103.	4.0	54
28	Binuclear Cageâ€Like Copper(II) Silsesquioxane ("Cooling Towerâ€) – Its High Catalytic Activity in the Oxidation of Benzene and Alcohols. European Journal of Inorganic Chemistry, 2013, 2013, 5240-5246.	2.0	53
29	A heterometallic (Fe ₆ Na ₈) cage-like silsesquioxane: synthesis, structure, spin glass behavior and high catalytic activity. RSC Advances, 2016, 6, 48165-48180.	3.6	53
30	Oxidations by the system "hydrogen peroxide–[Mn2L2O3][PF6]2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane)–oxalic acid― Part 6. Oxidation of methane and other alkanes and olefins in water. Journal of Organometallic Chemistry, 2005, 690, 4498-4504.	1.8	52
31	Regioselective alkane oxygenation with H2O2 catalyzed by titanosilicalite TS-1. Tetrahedron Letters, 2006, 47, 3071-3075.	1.4	52
32	Oxidation of hydrocarbons with hydrogen peroxide catalyzed by maltolato vanadium complexes covalently bonded to silica gel. Catalysis Communications, 2007, 8, 1516-1520.	3.3	51
33	High Catalytic Activity of Vanadium Complexes in Alkane Oxidations with Hydrogen Peroxide: An Effect of 8-Hydroxyquinoline Derivatives as Noninnocent Ligands. Inorganic Chemistry, 2018, 57, 1824-1839.	4.0	51
34	Oxidation of saturated hydrocarbons with peroxyacetic acid catalyzed by vanadium complexes. Journal of Molecular Catalysis A, 2004, 218, 171-177.	4.8	49
35	Oxidations catalyzed by osmium compounds. Part 1: Efficient alkane oxidation with peroxides catalyzed by an olefin carbonyl osmium(0) complex. Journal of Organometallic Chemistry, 2006, 691, 837-845.	1.8	49
36	Oxidation of isoeugenol to vanillin by the "H2O2–vanadate–pyrazine-2-carboxylic acid―reagent. Journal of Molecular Catalysis A, 2012, 363-364, 140-147.	4.8	49

#	Article	IF	CITATIONS
37	Oxidation of alkanes and alcohols with hydrogen peroxide catalyzed by complex Os ₃ (CO) ₁₀ (µâ€H) ₂ . Applied Organometallic Chemistry, 2010, 24, 464-472.	3.5	48
38	Alkane oxygenation with H2O2 catalysed by FeCl3 and 2,2′-bipyridine. Tetrahedron Letters, 2005, 46, 4563-4567.	1.4	47
39	Radical decomposition of hydrogen peroxide catalyzed by aqua complexes [M(H2O)]2+ (M = Be, Zn, Cd). Journal of Catalysis, 2014, 313, 135-148.	6.2	47
40	Alkane oxidation with peroxides catalyzed by cage-like copper(<scp>ii</scp>) silsesquioxanes. New Journal of Chemistry, 2015, 39, 187-199.	2.8	46
41	Oxidation of Reactive Alcohols with Hydrogen Peroxide Catalyzed by Manganese Complexes. Catalysis Letters, 2010, 138, 193-204.	2.6	45
42	Copper(<scp>ii</scp>) complexes with 2,2â€2:6â€2,2â€2â€2-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine substituted with quinolines. Synthesis, structure, antiproliferative activity, and catalytic activity in the oxidation of alkanes and alcohols with peroxides. Dalton Transactions, 2019, 48, 12656-12673.	3.3	44
43	Oxidation of alkanes and olefins with hydrogen peroxide in acetonitrile solution catalyzed by a mesoporous titanium-silicate Ti-MMM-2. Applied Catalysis A: General, 2009, 365, 96-104.	4.3	42
44	New oxidovanadium(<scp>iv</scp>) complex with a BIAN ligand: synthesis, structure, redox properties and catalytic activity. New Journal of Chemistry, 2018, 42, 16200-16210.	2.8	42
45	Cyclopentadienyl cobalt(III) complexes: Synthetic and catalytic chemistry. Coordination Chemistry Reviews, 2019, 387, 1-31.	18.8	41
46	Oxygenation of alkanes with hydrogen peroxide catalysed by osmium complexes. Chemical Communications, 2000, , 1131-1132.	4.1	40
47	Decamethylosmocene-catalyzed efficient oxidation of saturated and aromatic hydrocarbons and alcohols with hydrogen peroxide in the presence of pyridineâ~†. Journal of Catalysis, 2011, 277, 164-172.	6.2	40
48	Oxidation of Olefins with Hydrogen Peroxide Catalyzed by Bismuth Salts: A Mechanistic Study. ACS Catalysis, 2015, 5, 3823-3835.	11.2	40
49	High-Cluster (Cu ₉) Cage Silsesquioxanes: Synthesis, Structure, and Catalytic Activity. Inorganic Chemistry, 2018, 57, 11524-11529.	4.0	40
50	Oxidation of hydrocarbons with H ₂ O ₂ /O ₂ catalyzed by osmium complexes containing p-cymene ligands in acetonitrile. Catalysis Science and Technology, 2014, 4, 3214-3226.	4.1	38
51	Oxidation of alkanes with m-chloroperbenzoic acid catalyzed by iron(III) chloride and a polydentate amine. Journal of Molecular Catalysis A, 2004, 219, 255-264.	4.8	37
52	High Catalytic Activity of Heterometallic (Fe6Na7 and Fe6Na6) Cage Silsesquioxanes in Oxidations with Peroxides. Catalysts, 2017, 7, 101.	3.5	37
53	Oxidations by the system â€`hydrogen peroxide–[Mn2L2O3]2+ (L=1,4,7-trimethyl-1,4,7-triazacyclononane)–oxalic acid'. Part 11. Degradation of dye Rhodamine 6G and oxygenation of cyclohexene. Journal of Molecular Catalysis A, 2009, 299, 77-87.	4.8	36
54	Cageâ€like Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 15360-15363.	13.8	36

#	Article	IF	CITATIONS
55	Si ₁₀ Cu ₆ N ₄ Cage Hexacoppersilsesquioxanes Containing N Ligands: Synthesis, Structure, and High Catalytic Activity in Peroxide Oxidations. Inorganic Chemistry, 2017, 56, 15026-15040.	4.0	36
56	Aerobic hydroxylation of hydrocarbons catalysed by vanadate ion. Journal of Molecular Catalysis A, 2003, 197, 65-71.	4.8	34
57	Ionic Complexes of Tetra―and Nonanuclear Cage Copper(II) Phenylsilsesquioxanes: Synthesis and High Activity in Oxidative Catalysis. ChemCatChem, 2017, 9, 4437-4447.	3.7	33
58	Metal Complexes Containing Redox-Active Ligands in Oxidation of Hydrocarbons and Alcohols: A Review. Catalysts, 2019, 9, 1046.	3.5	33
59	Novel Cage-Like Hexanuclear Nickel(II) Silsesquioxane. Synthesis, Structure, and Catalytic Activity in Oxidations with Peroxides. Molecules, 2016, 21, 665.	3.8	32
60	Mild oxidative alkane functionalization with peroxides in the presence of ferrocene. Catalysis Communications, 2013, 31, 32-36.	3.3	31
61	Mild and Regioselective Hydroxylation of Methyl Group in Neocuproine: Approach to an N,O-Ligated Cu ₆ Cage Phenylsilsesquioxane. Organometallics, 2018, 37, 168-171.	2.3	31
62	Stereoselective Alkane Oxidation with meta-Chloroperoxybenzoic Acid (MCPBA) Catalyzed by Organometallic Cobalt Complexes. Molecules, 2016, 21, 1593.	3.8	29
63	Oxidation reactions catalyzed by osmium compounds. Part 4. Highly efficient oxidation of hydrocarbons and alcohols including glycerol by the H2O2/Os3(CO)12/pyridine reagent. RSC Advances, 2013, 3, 15065.	3.6	28
64	Highly efficient oxidation of alcohols by the system "hydrogen peroxide-[lmn(o)3mnl](pf6)2 (l =) Tj ETQqQ 88, 339-348.	0 0 0 rgBT 0.6	Overlock 10/ 27
65	Hydrogen Peroxide Oxygenation of Saturated and Unsaturated Hydrocarbons Catalyzed by Montmorillonite or Aluminum Oxide. Catalysis Letters, 2009, 132, 235-243.	2.6	27
66	Oxidation of alcohols with hydrogen peroxide catalyzed by soluble iron and osmium derivativesÂ. Reaction Kinetics and Catalysis Letters, 2006, 88, 157-163.	0.6	26
67	Heptanuclear Cage Cu ^{II} â€5ilsesquioxanes: Synthesis, Structure and Catalytic Activity. European Journal of Inorganic Chemistry, 2018, 2018, 2505-2511.	2.0	26
68	Novel Oxidovanadium Complexes with Redox-Active R-Mian and R-Bian Ligands: Synthesis, Structure, Redox and Catalytic Properties. Molecules, 2021, 26, 5706.	3.8	26
69	Oxidation of alkanes and benzene with hydrogen peroxide catalyzed by ferrocene in the presence of acids. Journal of Organometallic Chemistry, 2015, 793, 217-231.	1.8	25
70	Heptanuclear Fe ₅ Cu ₂ -Phenylgermsesquioxane containing 2,2′-Bipyridine: Synthesis, Structure, and Catalytic Activity in Oxidation of C–H Compounds. Inorganic Chemistry, 2018, 57, 528-534.	4.0	25
71	Peroxyacetic Acid Oxidation of Olefins and Alkanes Catalyzed by a Dinuclear Manganese(IV) Complex with 1,4,7-trimethyl-1,4,7-triazacyclononane. Catalysis Letters, 2007, 118, 22-29.	2.6	24
72	New p-tolylimido rhenium(<scp>v</scp>) complexes with carboxylate-based ligands: synthesis, structures and their catalytic potential in oxidations with peroxides. Dalton Transactions, 2014, 43, 5759-5776.	3.3	24

#	Article	IF	CITATIONS
73	New Oxidovanadium(IV) Complexes with 2,2′-bipyridine and 1,10-phenathroline Ligands: Synthesis, Structure and High Catalytic Activity in Oxidations of Alkanes and Alcohols with Peroxides. Catalysts, 2019, 9, 217.	3.5	24
74	Palanquin-Like Cu4Na4 Silsesquioxane Synthesis (via Oxidation of 1,1-bis(Diphenylphosphino)methane), Structure and Catalytic Activity in Alkane or Alcohol Oxidation with Peroxides. Catalysts, 2019, 9, 154.	3.5	24
75	Synthesis, structure, electrochemistry, and Mössbauer effect studies of (ring)Fe complexes (ring=Cp,) Tj ETQq1 [(η5-C6H7)Fe(η-C6H6)]+. Journal of Organometallic Chemistry, 2009, 694, 1161-1171.	l 0.78431 1.8	4 rgBT /Ove 23
76	Family of penta- and hexanuclear metallasilsesquioxanes: Synthesis, structure and catalytic properties in oxidations. Journal of Organometallic Chemistry, 2018, 867, 133-141.	1.8	23
77	Dinuclear manganese complexes containing 1,4-dimethyl-1,4,7-triazacyclononane ligands as well as carboxylato and oxo bridges. Inorganica Chimica Acta, 2006, 359, 1619-1626.	2.4	22
78	Oxidation of Saturated Hydrocarbons to Alkyl Hydroperoxides by a †H2O2/Titanosilicalite-1/NaOH/MeCN' System. Catalysis Letters, 2008, 123, 135-141.	2.6	22
79	Oxidation of hydrocarbons and alcohols with peroxides catalyzed by new π-cymene osmium complexes. Journal of Organometallic Chemistry, 2015, 784, 52-61.	1.8	22
80	Coordination Affinity of Cu(II)-Based Silsesquioxanes toward N,N-Ligands and Associated Skeletal Rearrangements: Cage and Ionic Products Exhibiting a High Catalytic Activity in Oxidation Reactions. Inorganic Chemistry, 2020, 59, 4536-4545.	4.0	22
81	Hexacoppergermsesquioxanes as complexes with N-ligands: Synthesis, structure and catalytic properties. Journal of Organometallic Chemistry, 2019, 884, 17-28.	1.8	21
82	A new "bicycle helmet―like copper(<scp>ii</scp>),sodiumphenylsilsesquioxane. Synthesis, structure and catalytic activity. Dalton Transactions, 2018, 47, 15666-15669.	3.3	18
83	Copper complexes with 1,10-phenanthrolines as efficient catalysts for oxidation of alkanes by hydrogen peroxide. Inorganica Chimica Acta, 2020, 512, 119889.	2.4	17
84	Oxidative functionalization of C–H compounds induced by the extremely efficient osmium catalysts (a) Tj ETQq	0.0.0 rgBT 4.1	Overlock 16
85	Oxidation of Organic Compounds with Peroxides Catalyzed by Polynuclear Metal Compounds. Catalysts, 2021, 11, 186.	3.5	16
86	Oxygenation of saturated and aromatic hydrocarbons with H2O2 catalysed by the carbonyl thiophenolate iron complex (OC)3Fe(PhS)2Fe(CO)3. Catalysis Today, 2013, 218-219, 93-98.	4.4	15
87	Oxidation of hydroxyacetone (acetol) with hydrogen peroxide in acetonitrile solution catalyzed by iron(III) chloride. Journal of Molecular Catalysis A, 2016, 422, 103-114.	4.8	15
88	New Cu4Na4- and Cu5-Based Phenylsilsesquioxanes. Synthesis via Complexation with 1,10-Phenanthroline, Structures and High Catalytic Activity in Alkane Oxidations with Peroxides in Acetonitrile. Catalysts, 2019, 9, 701.	3.5	15
89	Hydrocarbon oxygenation with Oxone catalyzed by complex [Mn2L2O3]2+ (L=1,4,7-trimethyl-1,4,7-triazacyclononane) and oxalic acid. Tetrahedron, 2012, 68, 8589-8599.	1.9	14
90	Cu42Ge24Na4—A Giant Trimetallic Sesquioxane Cage: Synthesis, Structure, and Catalytic Activity. Catalysts, 2018, 8, 484.	3.5	14

#	Article	IF	CITATIONS
91	Synthesis, structures and catalytic activity of p-tolylimido rhenium(V) complexes incorporating quinoline-derived ligands. Inorganica Chimica Acta, 2017, 455, 683-695.	2.4	12
92	Oxidation of olefins with H2O2 catalyzed by gallium(III) nitrate and aluminum(III) nitrate in solution. Journal of Molecular Catalysis A, 2016, 422, 216-220.	4.8	11
93	Exploring Cagelike Silsesquioxane Building Blocks for the Design of Heterometallic Cu ₄ /M ₄ Architectures. Crystal Growth and Design, 2022, 22, 2146-2157.	3.0	11
94	Oxygenation of aromatic hydrocarbons with hydrogen peroxide catalyzed by rhodium carbonyl complexes. Applied Organometallic Chemistry, 2008, 22, 684-688.	3.5	10
95	p-Tolylimido rhenium(<scp>v</scp>) complexes with phenolate-based ligands: synthesis, X-ray studies and catalytic activity in oxidation with tert-butylhydroperoxide. Dalton Transactions, 2016, 45, 334-351.	3.3	10
96	Oxidative functionalisation of ethane with hydrogen peroxide catalysed by chromic acid. Journal of Chemical Research, 2000, 2000, 576-577.	1.3	9
97	Novel Copper(II) Complexes with Dipinodiazafluorene Ligands: Synthesis, Structure, Magnetic and Catalytic Properties. Molecules, 2022, 27, 4072.	3.8	6
98	Cageâ€like Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie, 2016, 128, 15586-15589.	2.0	1
99	Metal-Catalyzed Oxidation of C–H Compounds with Peroxides in Unconventional Solvents. Green Chemistry and Sustainable Technology, 2019, , 1-35.	0.7	0