
Sung-Young Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3088594/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. Journal of Cell Science, 2009, 122, 425-435.	1.2	162
2	Functional Roles of Multiple Feedback Loops in Extracellular Signal-Regulated Kinase and Wnt Signaling Pathways That Regulate Epithelial-Mesenchymal Transition. Cancer Research, 2010, 70, 6715-6724.	0.4	138
3	Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nature Communications, 2019, 10, 5486.	5.8	89
4	Investigations Into the Analysis and Modeling of the TNFÂ-Mediated NF-ÂB-Signaling Pathway. Genome Research, 2003, 13, 2413-2422.	2.4	80
5	Modelling Spatially Regulated β-Catenin Dynamics and Invasion inÂIntestinal Crypts. Biophysical Journal, 2010, 99, 716-725.	0.2	66
6	The crossregulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor. Journal of Molecular Cell Biology, 2012, 4, 153-163.	1.5	65
7	Targeting of PYK2 Synergizes with EGFR Antagonists in Basal-like TNBC and Circumvents HER3-Associated Resistance via the NEDD4–NDRG1 Axis. Cancer Research, 2017, 77, 86-99.	0.4	63
8	The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes. Nature Communications, 2014, 5, 5777.	5.8	59
9	A hidden incoherent switch regulates RCAN1 in the calcineurin–NFAT signaling network. Journal of Cell Science, 2011, 124, 82-90.	1.2	45
10	MLK3 Is Part of a Feedback Mechanism That Regulates Different Cellular Responses to Reactive Oxygen Species. Science Signaling, 2014, 7, ra52.	1.6	45
11	Switching feedback mechanisms realize the dual role of MCIP in the regulation of calcineurin activity. FEBS Letters, 2006, 580, 5965-5973.	1.3	34
12	The hidden switches underlying RORα-mediated circuits that critically regulate uncontrolled cell proliferation. Journal of Molecular Cell Biology, 2014, 6, 338-348.	1.5	27
13	Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer. PLoS Computational Biology, 2018, 14, e1006192.	1.5	26
14	Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. ELife, 2021, 10, .	2.8	21
15	Signaling Heterogeneity is Defined by Pathway Architecture and Intercellular Variability in Protein Expression. IScience, 2021, 24, 102118.	1.9	19
16	Run-to-Run Overlay Control of Steppers in Semiconductor Manufacturing Systems Based on History Data Analysis and Neural Network Modeling. IEEE Transactions on Semiconductor Manufacturing, 2005, 18, 605-613.	1.4	18
17	Feedback, Crosstalk and Competition: Ingredients for Emergent Non-Linear Behaviour in the PI3K/mTOR Signalling Network. International Journal of Molecular Sciences, 2021, 22, 6944.	1.8	17
18	Unveiling Hidden Dynamics of Hippo Signalling: A Systems Analysis. Genes, 2016, 7, 44.	1.0	15

SUNG-YOUNG SHIN

#	Article	IF	CITATIONS
19	System-level investigation into the regulatory mechanism of the calcineurin/NFAT signaling pathway. Cellular Signalling, 2008, 20, 1117-1124.	1.7	14
20	Control of Glucocorticoid Receptor Levels by PTEN Establishes a Failsafe Mechanism for Tumor Suppression. Molecular Cell, 2020, 80, 279-295.e8.	4.5	14
21	Dynamic modelling of the PI3K/MTOR signalling network uncovers biphasic dependence of mTORC1 activity on the mTORC2 subunit SIN1. PLoS Computational Biology, 2021, 17, e1008513.	1.5	14
22	Dissecting Cell-Fate Determination Through Integrated Mathematical Modeling of the ERK/MAPK Signaling Pathway. Methods in Molecular Biology, 2017, 1487, 409-432.	0.4	13
23	Dynamical analysis of the calcium signaling pathway in cardiac myocytes based on logarithmic sensitivity analysis. Biotechnology Journal, 2008, 3, 639-647.	1.8	11
24	Cardiac Systems Biology and Parameter Sensitivity Analysis: Intracellular Ca2+ Regulatory Mechanisms in Mouse Ventricular Myocytes. Advances in Biochemical Engineering/Biotechnology, 2008, 110, 25-45.	0.6	8
25	Multiscale Modeling of Tumorigenesis Induced by Mitochondrial Incapacitation in Cell Death. IEEE Transactions on Biomedical Engineering, 2011, 58, 3028-3032.	2.5	8
26	Coupled feedback regulation of nuclear factor of activated T-cells (NFAT) modulates activation-induced cell death of T cells. Scientific Reports, 2019, 9, 10637.	1.6	8
27	ELECANS—an integrated model development environment for multiscale cancer systems biology. Bioinformatics, 2013, 29, 957-959.	1.8	4
28	A Regulated Double-Negative Feedback Decodes the Temporal Gradient of Input Stimulation in a Cell Signaling Network. PLoS ONE, 2016, 11, e0162153.	1.1	3
29	Unravelling the functional interaction structure of a cellular network from temporal slope information of experimental data. FEBS Journal, 2005, 272, 3950-3959.	2.2	2
30	Simulation Sudy of the TNFα Mediated NF-κB Signaling Pathway. Lecture Notes in Computer Science, 2003, , 171-171.	1.0	1