Bodhisatwa Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3088558/publications.pdf

Version: 2024-02-01

430754 454834 33 964 18 30 citations h-index g-index papers 33 33 33 1600 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A vascularized bone-on-a-chip model development via exploring mechanical stimulation for evaluation of fracture healing therapeutics. In Vitro Models, 2022, 1, 73-83.	1.0	4
2	Direct 3D Printing of Seashell Precursor toward Engineering a Multiphasic Calcium Phosphate Bone Graft. ACS Biomaterials Science and Engineering, 2021, 7, 3806-3820.	2.6	7
3	Irreversible Electroporation as an Alternative to Wound Debridement Surgery. Surgical Technology International, 2021, 39, 67-73.	0.1	O
4	Carbon nano dot decorated copper nanowires for SERS-Fluorescence dual-mode imaging/anti-microbial activity and enhanced angiogenic activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117669.	2.0	16
5	Differential Cell Death and Regrowth of Dermal Fibroblasts and Keratinocytes After Application of Pulsed Electric Fields. Bioelectricity, 2020, 2, 175-185.	0.6	5
6	Laser Patterned ZNO Substituted Calcium Phosphate Scaffolds via Viscous Polymer Processing for Bone Graft. Materials Today: Proceedings, 2019, 11, 849-858.	0.9	1
7	Carbon Nanodots Doped Super-paramagnetic Iron Oxide Nanoparticles for Multimodal Bioimaging and Osteochondral Tissue Regeneration via External Magnetic Actuation. ACS Biomaterials Science and Engineering, 2019, 5, 3549-3560.	2.6	37
8	Manganese oxide-carbon quantum dots nano-composites for fluorescence/magnetic resonance (T1) dual mode bioimaging, long term cell tracking, and ROS scavenging. Materials Science and Engineering C, 2019, 102, 427-436.	3.8	16
9	Hierarchical surface morphology on Ti6Al4V via patterning and hydrothermal treatment towards improving cellular response. Applied Surface Science, 2019, 478, 806-817.	3.1	26
10	Doping of carbon nanodots for saving cells from silver nanotoxicity: A study on recovering osteogenic differentiation potential. Toxicology in Vitro, 2019, 57, 81-95.	1.1	6
11	<i>In Vivo</i> Cell Tracking, Reactive Oxygen Species Scavenging, and Antioxidative Gene Down Regulation by Long-Term Exposure of Biomass-Derived Carbon Dots. ACS Biomaterials Science and Engineering, 2019, 5, 346-356.	2.6	34
12	Doping of Carbon Quantum Dots (CDs) in Calcium Phosphate Nanorods for Inducing Ectopic Chondrogenesis via Activation of the HIF- $\hat{l}\pm$ /SOX-9 Pathway. ACS Omega, 2019, 4, 374-386.	1.6	7
13	Morphologyâ€induced physicoâ€mechanical and biological characteristics of TPU–PDMS blend scaffolds for skin tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1634-1644.	1.6	27
14	Hybrid electrospun fibers based on TPU-PDMS and spherical nanohydroxyapatite for bone tissue engineering. Materials Today Communications, 2018, 16, 264-273.	0.9	17
15	Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications. Bioengineering, 2018, 5, 68.	1.6	46
16	Onion derived carbon nanodots for live cell imaging and accelerated skin wound healing. Journal of Materials Chemistry B, 2017, 5, 6579-6592.	2.9	98
17	Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management. Biomaterials Science, 2017, 5, 1786-1799.	2.6	66
18	Structurally Tuned Antimicrobial Mesoporous Hydroxyapatite Nanorods by Cyclic Oligosaccharides Regulation To Release a Drug for Osteomyelitis. Crystal Growth and Design, 2017, 17, 433-445.	1.4	13

#	Article	IF	CITATIONS
19	Nano-/Microfibrous Cotton-Wool-Like 3D Scaffold with Core–Shell Architecture by Emulsion Electrospinning for Skin Tissue Regeneration. ACS Biomaterials Science and Engineering, 2017, 3, 3563-3575.	2.6	50
20	Carbon nanodot impregnated fluorescent nanofibers for in vivo monitoring and accelerating full-thickness wound healing. Journal of Materials Chemistry B, 2017, 5, 6645-6656.	2.9	27
21	Inhibition of fibrillation of human serum albumin through interaction with chitosan-based biocompatible silver nanoparticles. RSC Advances, 2016, 6, 43104-43115.	1.7	32
22	Accelerating full thickness wound healing using collagen sponge of mrigal fish (Cirrhinus) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 622 Td
23	Single step synthesized sulfur and nitrogen doped carbon nanodots from whey protein: nanoprobes for longterm cell tracking crossing the barrier of photo-toxicity. RSC Advances, 2016, 6, 60794-60805.	1.7	19
24	Excavating the Role of <i>Aloe Vera</i> Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection. ACS Applied Materials & https://doi.org/10.1007/j.com/1	4.0	31
25	A Simple Approach for an Eggshell-Based 3D-Printed Osteoinductive Multiphasic Calcium Phosphate Scaffold. ACS Applied Materials & Scaffold.	4.0	52
26	On-Demand Guided Bone Regeneration with Microbial Protection of Ornamented SPU Scaffold with Bismuth-Doped Single Crystalline Hydroxyapatite: Augmentation and Cartilage Formation. ACS Applied Materials & Diterraces, 2016, 8, 4086-4100.	4.0	35
27	One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging. Talanta, 2016, 150, 253-264.	2.9	61
28	Microwave assisted rapid synthesis of N-methylene phosphonic chitosan via Mannich-type reaction. Carbohydrate Polymers, 2015, 133, 345-352.	5.1	22
29	Orange-red silver emitters for sensing application and bio-imaging. Dalton Transactions, 2015, 44, 11457-11469.	1.6	17
30	Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species. Journal of Materials Chemistry B, 2014, 2, 6839-6847.	2.9	109
31	SINGLE STEP SINTERED CALCIUM PHOSPHATE FIBERS FROM AVIAN EGG SHELL. International Journal of Modern Physics Conference Series, 2013, 22, 305-312.	0.7	2
32	Poly(maleic acid) – A novel dispersant for aqueous alumina slurry. Journal of Asian Ceramic Societies, 2013, 1, 184-190.	1.0	27
33	Cyclic RGD peptide conjugated trypsin etched gold quantum clusters: novel biolabeling agents for stem cell imaging. Journal of Stem Cells, 2012, 7, 189-99.	1.0	2