## Jostein Dahle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3088419/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | 89Zr-PET imaging to predict tumor uptake of 177Lu-NNV003 anti-CD37 radioimmunotherapy in mouse<br>models of B cell lymphoma. Scientific Reports, 2022, 12, 6286.                                                                                                             | 3.3 | 3         |
| 2  | Anti-CD37 radioimmunotherapy with 177Lu-NNV003 synergizes with the PARP inhibitor olaparib in<br>treatment of non-Hodgkin's lymphoma in vitro. PLoS ONE, 2022, 17, e0267543.                                                                                                 | 2.5 | 1         |
| 3  | FDG PET/CT and Dosimetric Studies of 177Lu-Lilotomab Satetraxetan in a First-in-Human Trial for<br>Relapsed Indolent non-Hodgkin Lymphoma—Are We Hitting the Target?. Molecular Imaging and Biology,<br>2022, 24, 807-817.                                                   | 2.6 | 3         |
| 4  | FDG PET/CT parameters and correlations with tumor-absorbed doses in a phase 1 trial of<br>177Lu-lilotomab satetraxetan for treatment of relapsed non-Hodgkin lymphoma. European Journal of<br>Nuclear Medicine and Molecular Imaging, 2021, 48, 1902-1914.                   | 6.4 | 6         |
| 5  | Myelosuppression in patients treated with <sup>177</sup> Lutetium-lilotomab satetraxetan can be<br>predicted with absorbed dose to the red marrow as the only variable. Acta Oncológica, 2021, 60,<br>1481-1488.                                                             | 1.8 | 5         |
| 6  | The therapeutic effectiveness of 177Lu-lilotomab in B-cell non-Hodgkin lymphoma involves modulation of G2/M cell cycle arrest. Leukemia, 2020, 34, 1315-1328.                                                                                                                | 7.2 | 12        |
| 7  | Phase 1/2a study of 177Lu-lilotomab satetraxetan in relapsed/refractory indolent non-Hodgkin<br>lymphoma. Blood Advances, 2020, 4, 4091-4101.                                                                                                                                | 5.2 | 33        |
| 8  | Targeted alpha therapy for chronic lymphocytic leukaemia and non-Hodgkin's lymphoma with the<br>anti-CD37 radioimmunoconjugate 212Pb-NNV003. PLoS ONE, 2020, 15, e0230526.                                                                                                   | 2.5 | 22        |
| 9  | <sup>177</sup> Lu-Lilotomab Satetraxetan Has the Potential to Counteract Resistance to Rituximab in<br>Non-Hodgkin Lymphoma. Journal of Nuclear Medicine, 2020, 61, 1468-1475.                                                                                               | 5.0 | 9         |
| 10 | Targeting B-cell malignancies with the beta-emitting anti-CD37 radioimmunoconjugate 177Lu-NNV003.<br>European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2311-2321.                                                                                        | 6.4 | 14        |
| 11 | The Dual Cell Cycle Kinase Inhibitor JNJ-7706621 Reverses Resistance to CD37-Targeted<br>Radioimmunotherapy in Activated B Cell Like Diffuse Large B Cell Lymphoma Cell Lines. Frontiers in<br>Oncology, 2019, 9, 1301.                                                      | 2.8 | 13        |
| 12 | Pre-dosing with lilotomab prior to therapy with 177Lu-lilotomab satetraxetan significantly increases<br>the ratio of tumor to red marrow absorbed dose in non-Hodgkin lymphoma patients. European Journal<br>of Nuclear Medicine and Molecular Imaging, 2018, 45, 1233-1241. | 6.4 | 21        |
| 13 | Biodistribution and Dosimetry Results from a Phase 1 Trial of Therapy with the Antibody–Radionuclide<br>Conjugate <sup>177</sup> Lu-Lilotomab Satetraxetan. Journal of Nuclear Medicine, 2018, 59, 704-710.                                                                  | 5.0 | 16        |
| 14 | Combination of <sup>177</sup> Luâ€lilotomab with rituximab significantly improves the therapeutic<br>outcome in preclinical models of nonâ€Hodgkin's lymphoma. European Journal of Haematology, 2018,<br>101, 522-531.                                                       | 2.2 | 18        |
| 15 | Abstract 848: In vitro and in vivo evaluation of the beta-emitting lutetium-177 labeled anti-CD37 antibody radionuclide conjugate177Lu-NNV003 in DLBCL, CLL and MCL models. , 2018, , .                                                                                      |     | 0         |
| 16 | Targeted Alpha Therapy with 212Pb-NNV003 for the Treatment of CD37 Positive B-Cell Chronic<br>Lymphocytic Leukemia (CLL) and Non-Hodgkin Lymphoma (NHL). Blood, 2018, 132, 4422-4422.                                                                                        | 1.4 | 3         |
| 17 | Cell Cycle Kinase Inhibitors Potentiate the Effect of 177lu-Lilotomab Satetraxetan in Treatment of Aggressive Diffuse Large B-Cell Lymphoma Cell Lines. Blood, 2018, 132, 1371-1371.                                                                                         | 1.4 | 0         |
| 18 | Tumor-Absorbed Dose for Non-Hodgkin Lymphoma Patients Treated with the Anti-CD37 Antibody<br>Radionuclide Conjugate <sup>177</sup> Lu-Lilotomab Satetraxetan. Journal of Nuclear Medicine, 2017,<br>58, 48-54.                                                               | 5.0 | 29        |

JOSTEIN DAHLE

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Red Marrow–Absorbed Dose for Non-Hodgkin Lymphoma Patients Treated with<br><sup>177</sup> Lu-Lilotomab Satetraxetan, a Novel Anti-CD37 Antibody–Radionuclide Conjugate.<br>Journal of Nuclear Medicine, 2017, 58, 55-61.                                                 | 5.0 | 22        |
| 20 | 177lu-Satetraxetan-Lilotomab in the Treatment of Patients with Indolent Non-Hodgkin B-Cell Lymphoma<br>(NHL), Phase 1/2 Safety and Efficacy Data from Four Different Pre-Dosing Regimens. Blood, 2016, 128,<br>1780-1780.                                                | 1.4 | 2         |
| 21 | Abstract LB-252: Efficacy and safety results of Betalutin® (177Lu-DOTA-HH1) in a phase I/II study of patients with non-hodgkin B-cell lymphoma (NHL). , 2016, , .                                                                                                        |     | 0         |
| 22 | Combination of 177lutetium-Satetraxetan-Lilotomab and Rituximab Results in Improved Therapeutic<br>Effect in Preclinical Models of Non-Hodgkin Lymphoma. Blood, 2016, 128, 4189-4189.                                                                                    | 1.4 | 0         |
| 23 | The Health Related Quality of Life Is Maintained Following Treatment of Indolent Non-Hodgkin's<br>Lymphoma Patients with the Novel Effective Antibody Radionuclide Conjugate<br>177lu-Satetraxetan-Lilotomab. Blood, 2016, 128, 5339-5339.                               | 1.4 | 0         |
| 24 | Targeted Cancer Therapy with a Novel Anti-CD37 Beta-Particle Emitting Radioimmunoconjugate for<br>Treatment of Non-Hodgkin Lymphoma. PLoS ONE, 2015, 10, e0128816.                                                                                                       | 2.5 | 30        |
| 25 | A Phase I Study of 177 lu-DOTA-HH1 (Betalutin) Radioimmunotherapy for Patients with Relapsed CD37+<br>Non-Hodgkin's B Cell Lymphoma. Blood, 2014, 124, 3094-3094.                                                                                                        | 1.4 | 3         |
| 26 | 177Lu-DOTA-HH1, a Novel Anti-CD37 Radio-Immunoconjugate: A Study of Toxicity in Nude Mice. PLoS ONE, 2014, 9, e103070.                                                                                                                                                   | 2.5 | 22        |
| 27 | Advantage of lutetium-177 versus radioiodine immunoconjugate in targeted radionuclide therapy of<br>b-cell tumors. Anticancer Research, 2014, 34, 3263-9.                                                                                                                | 1.1 | 6         |
| 28 | Modifications in Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameters After<br>α-Particle-Emitting 227Th-trastuzumab Therapy of HER2-Expressing Ovarian Cancer Xenografts.<br>International Journal of Radiation Oncology Biology Physics, 2013, 87, 153-159. | 0.8 | 9         |
| 29 | Biodistribution and Dosimetry of 177Lu-tetulomab, a New Radioimmunoconjugate for Treatment of<br>Non-Hodgkin Lymphoma. Current Radiopharmaceuticals, 2013, 6, 20-27.                                                                                                     | 0.8 | 36        |
| 30 | Comparing High LET <sup>227</sup> Th- and Low LET <sup>177</sup> Lu-trastuzumab<br>in Mice with HER-2 Positive SKBR-3 Xenografts. Current Radiopharmaceuticals, 2013, 6, 78-86.                                                                                          | 0.8 | 13        |
| 31 | Targeted Alpha Therapy with 227Th-trastuzumab of Intraperitoneal Ovarian Cancer in Nude Mice.<br>Current Radiopharmaceuticals, 2013, 6, 106-116.                                                                                                                         | 0.8 | 32        |
| 32 | Evaluating antigen targeting and anti-tumor activity of a new anti-CD37 radioimmunoconjugate<br>against non-Hodgkin's lymphoma. Anticancer Research, 2013, 33, 85-95.                                                                                                    | 1.1 | 35        |
| 33 | Preclinical evaluation of 227Th-labeled and 177Lu-labeled trastuzumab in mice with HER-2-positive ovarian cancer xenografts. Nuclear Medicine Communications, 2012, 33, 838-847.                                                                                         | 1.1 | 28        |
| 34 | Transcriptional responses in irradiated and bystander fibroblasts after low dose α-particle radiation.<br>International Journal of Radiation Biology, 2012, 88, 713-719.                                                                                                 | 1.8 | 11        |
| 35 | The role of serotonin and p53 status in the radiation-induced bystander effect. International Journal of Radiation Biology, 2012, 88, 773-776.                                                                                                                           | 1.8 | 22        |
| 36 | A laboratory inter-comparison of the importance of serum serotonin levels in the measurement of a range of radiation-induced bystander effects: Overview of study and results presentation.<br>International Journal of Radiation Biology, 2012, 88, 763-769.            | 1.8 | 9         |

JOSTEIN DAHLE

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fractionated Therapy of HER2-Expressing Breast and Ovarian Cancer Xenografts in Mice with Targeted Alpha Emitting 227Th-DOTA-p-benzyl-trastuzumab. PLoS ONE, 2012, 7, e42345.                                                                                                             | 2.5 | 51        |
| 38 | Genome-Wide Microarray Analysis of Human Fibroblasts in Response to Î <sup>3</sup> Radiation and the Radiation-Induced Bystander Effect. Radiation Research, 2011, 177, 35.                                                                                                               | 1.5 | 18        |
| 39 | Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled<br>p-benzyl-DOTA-trastuzumab. EJNMMI Research, 2011, 1, 18.                                                                                                                                               | 2.5 | 47        |
| 40 | Treatment of HER2-Expressing Breast Cancer and Ovarian Cancer Cells With Alpha Particle-Emitting 227Th-Trastuzumab. International Journal of Radiation Oncology Biology Physics, 2011, 79, 563-570.                                                                                       | 0.8 | 35        |
| 41 | Toxicity and Relative Biological Effectiveness of Alpha Emitting Radioimmunoconjugates. Current<br>Radiopharmaceuticals, 2011, 4, 321-328.                                                                                                                                                | 0.8 | 21        |
| 42 | Dosimetry of a 238Pu-based alpha-particle irradiator and its biological application in a study of the bystander effect. Anticancer Research, 2011, 31, 2113-20.                                                                                                                           | 1.1 | 9         |
| 43 | Assessment of long-term radiotoxicity after treatment with the low-dose-rate alpha-particle-emitting radioimmunoconjugate 227Th-rituximab. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 93-102.                                                                  | 6.4 | 35        |
| 44 | In Vitro Cytotoxicity of Low-Dose-Rate Radioimmunotherapy by the Alpha-Emitting<br>Radioimmunoconjugate Thorium-227–DOTA–Rituximab. International Journal of Radiation Oncology<br>Biology Physics, 2009, 75, 886-895.                                                                    | 0.8 | 20        |
| 45 | A 238Pu irradiator for exposure of cultured cells with alpha-radiation: Construction, calibration and dosimetry. Applied Radiation and Isotopes, 2009, 67, 1998-2002.                                                                                                                     | 1.5 | 12        |
| 46 | Relative Biologic Effects of Low-Dose-Rate α-Emitting 227Th-Rituximab and β-Emitting<br>90Y-Tiuexetan-Ibritumomab Versus External Beam X-Radiation. International Journal of Radiation<br>Oncology Biology Physics, 2008, 72, 186-192.                                                    | 0.8 | 36        |
| 47 | Overexpression of human OGC1 in mammalian cells decreases ultraviolet A induced mutagenesis.<br>Cancer Letters, 2008, 267, 18-25.                                                                                                                                                         | 7.2 | 22        |
| 48 | Targeted Alpha-Particle Therapy with 227Th-Labeled Antibodies. Current Radiopharmaceuticals, 2008, 1, 209-214.                                                                                                                                                                            | 0.8 | 16        |
| 49 | Evaluation of the Binding of Radiolabeled Rituximab to CD20-Positive Lymphoma Cells: An <i>In<br/>Vitro</i> Feasibility Study Concerning Low-Dose-Rate Radioimmunotherapy with<br>the <i>α</i> -Emitter <sup>227</sup> Th. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 469-479. | 1.0 | 17        |
| 50 | Targeted cancer therapy with a novel low-dose rate α-emitting radioimmunoconjugate. Blood, 2007, 110, 2049-2056.                                                                                                                                                                          | 1.4 | 80        |
| 51 | A one-step method for determining the maximum number of bound antibodies, and the affinity and association rate constants for antibody binding. Nuclear Medicine Communications, 2007, 28, 742-747.                                                                                       | 1.1 | 1         |
| 52 | Preparation of TH <sup>227</sup> -Labeled Radioimmunoconjugates, Assessment of Serum Stability and<br>Antigen Binding Ability. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 431-437.                                                                                             | 1.0 | 45        |
| 53 | Bystander Effects in Cell Death Induced by Photodynamic Treatment, UVA Radiation and Inhibitors of ATP Synthesis¶. Photochemistry and Photobiology, 2007, 73, 378-387.                                                                                                                    | 2.5 | 1         |
| 54 | Initial evaluation of 227Th-p-benzyl-DOTA-rituximab for low-dose rate α-particle radioimmunotherapy.<br>Nuclear Medicine and Biology, 2006, 33, 271-279.                                                                                                                                  | 0.6 | 55        |

JOSTEIN DAHLE

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bystander effects in UV-induced genomic instability: antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation. Journal of Carcinogenesis, 2005, 4, 11.                                                      | 2.5 | 65        |
| 56 | Bystander Effects may Modulate Ultraviolet A and B Radiation-Induced Delayed Mutagenesis. Radiation<br>Research, 2005, 163, 289-295.                                                                                                 | 1.5 | 24        |
| 57 | The pheomelanin precursor 5-S-cysteinyldopa protects melanocytes from membrane damage induced by ultraviolet A radiation. Cancer Letters, 2005, 221, 131-134.                                                                        | 7.2 | 5         |
| 58 | Multiplex Polymerase Chain Reaction Analysis of UVâ€A– and UVâ€B–induced Delayed and Early Mutations<br>in V79 Chinese Hamster Cells <sup>¶</sup> . Photochemistry and Photobiology, 2005, 81, 114-119.                              | 2.5 | 0         |
| 59 | Multiplex Polymerase Chain Reaction Analysis of UV-A– and UV-B–induced Delayed and Early Mutations<br>in V79 Chinese Hamster Cells¶. Photochemistry and Photobiology, 2005, 81, 114.                                                 | 2.5 | 9         |
| 60 | Melanin Synthesis may Sensitize Melanocytes to Oxidative DNA Damage by Ultraviolet A Radiation and<br>Protect Melanocytes from Direct DNA Damage by Ultraviolet B Radiation. Pigment Cell & Melanoma<br>Research, 2004, 17, 549-550. | 3.6 | 19        |
| 61 | Automated counting of mammalian cell colonies by means of a flat bed scanner and image processing.<br>Cytometry, 2004, 60A, 182-188.                                                                                                 | 1.8 | 55        |
| 62 | Increased level of oxidative stress in genomically unstable cell clones. Journal of Photochemistry and Photobiology B: Biology, 2004, 74, 23-28.                                                                                     | 3.8 | 8         |
| 63 | Pigmented Melanocytes Are Protected Against Ultraviolet-A-Induced Membrane Damage. Journal of<br>Investigative Dermatology, 2003, 121, 564-569.                                                                                      | 0.7 | 34        |
| 64 | Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and<br>X-radiation. Cancer Research, 2003, 63, 1464-9.                                                                                   | 0.9 | 79        |
| 65 | Bystander Effects in Cell Death Induced by Photodynamic Treatment, UVA Radiation and Inhibitors of ATP Synthesis¶. Photochemistry and Photobiology, 2001, 73, 378.                                                                   | 2.5 | 29        |
| 66 | Gap Junctional Intercellular Communication is not a Major Mediator in the Bystander Effect in Photodynamic Treatment of MDCK II Cells. Radiation Research, 2000, 154, 331-341.                                                       | 1.5 | 26        |
| 67 | The Mode of Cell Death Induced by Photodynamic Treatment Depends on Cell Density. Photochemistry and Photobiology, 1999, 70, 363-367.                                                                                                | 2.5 | 58        |
| 68 | Cooperative Inactivation of Cells in Microcolonies Treated with UVA Radiation. Radiation Research, 1999, 152, 174.                                                                                                                   | 1.5 | 14        |
| 69 | <title>Cooperative effects of photosensitized cell killing</title> ., 1999, , .                                                                                                                                                      |     | 0         |