
Wanli Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3088069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using learning analytics to support students' engineering design: the angle of prediction. Interactive Learning Environments, 2023, 31, 2594-2611.	6.4	14
2	The role of self-directed learning in studying 3D design and modeling. Interactive Learning Environments, 2023, 31, 1651-1664.	6.4	9
3	The role of self-regulated learning on science and design knowledge gains in engineering projects. Interactive Learning Environments, 2023, 31, 87-99.	6.4	6
4	Academic development of multimodal learning analytics: a bibliometric analysis. Interactive Learning Environments, 2023, 31, 3543-3561.	6.4	9
5	Exploring collaborative problem solving in virtual laboratories: a perspective of socially shared metacognition. Journal of Computing in Higher Education, 2023, 35, 296-319.	6.1	3
6	Mining Teacher Informal Online Learning Networks: Insights From Massive Educational Chat Tweets. Journal of Educational Computing Research, 2023, 61, 127-150.	5.5	7
7	Mining Large Open Online Learning Networks: Exploring Community Dynamics and Communities of Performance. Journal of Educational Computing Research, 2023, 61, 390-415.	5.5	2
8	Supporting Youth With Autism Learning Social Competence: A Comparison of Game-and Nongame-Based Activities in 3D Virtual World. Journal of Educational Computing Research, 2022, 60, 74-103.	5.5	6
9	Understanding students' effective use of data in the age of big data in higher education. Behaviour and Information Technology, 2022, 41, 2560-2577.	4.0	4
10	An Interpretable Pipeline for Identifying At-Risk Students. Journal of Educational Computing Research, 2022, 60, 380-405.	5.5	3
11	Exploring behavioural differences between certificate achievers and explorers in MOOCs. Asia Pacific Journal of Education, 2022, 42, 802-814.	2.1	8
12	Toward building a fair peer recommender to support help-seeking in online learning. Distance Education, 2022, 43, 30-55.	3.9	6
13	Do Gender and Race Matter? Supporting Help-Seeking with Fair Peer Recommenders in an Online Algebra Learning Platform. , 2022, , .		2
14	Understanding topic duration in Twitter learning communities using data mining. Journal of Computer Assisted Learning, 2022, 38, 513-525.	5.1	12
15	Trends and Issues in STEM + C Research: A Bibliometric Perspective. , 2022, , .		2
16	Building socially responsible conversational agents using big data to support online learning: A case with Algebra Nation. British Journal of Educational Technology, 2022, 53, 776-803.	6.3	8
17	Linking cognitive processes and learning outcomes: The influence of cognitive presence on learning performance in MOOCs. British Journal of Educational Technology, 2022, 53, 1459-1477.	6.3	3
18	Does the early bird catch the worm? A large-scale examination of the effects of early participation in online learning. Distance Education, 2022, 43, 466-481.	3.9	2

WANLI XING

#	Article	IF	CITATIONS
19	Large-scale path modeling of remixing to computational thinking. Interactive Learning Environments, 2021, 29, 414-427.	6.4	8
20	Automatic Assessment of Students' Engineering Design Performance Using a Bayesian Network Model. Journal of Educational Computing Research, 2021, 59, 230-256.	5.5	22
21	Quantifying the Influence of Achievement Emotions for Student Learning in MOOCs. Journal of Educational Computing Research, 2021, 59, 429-452.	5.5	12
22	Natural Language Generation Using Deep Learning to Support MOOC Learners. International Journal of Artificial Intelligence in Education, 2021, 31, 186-214.	5.5	35
23	Designing a Transferable Predictive Model for Online Learning Using a Bayesian Updating Approach. IEEE Transactions on Learning Technologies, 2021, 14, 474-485.	3.2	6
24	Reciprocal Relations Between Students' Evaluation, Reformulation Behaviors, and Engineering Design Performance Over Time. Journal of Science Education and Technology, 2021, 30, 595-607.	3.9	3
25	Yet Another Predictive Model? Fair Predictions of Students' Learning Outcomes in an Online Math Learning Platform. , 2021, , .		8
26	Curriculum design for social, cognitive and emotional engagement in Knowledge Building. International Journal of Educational Technology in Higher Education, 2021, 18, .	7.6	7
27	Profiling self-regulation behaviors in STEM learning of engineering design. Computers and Education, 2020, 143, 103669.	8.3	58
28	Examining temporal dynamics of self-regulated learning behaviors in STEM learning: A network approach. Computers and Education, 2020, 158, 103987.	8.3	31
29	ldentifying patterns in students' scientific argumentation: content analysis through text mining using Latent Dirichlet Allocation. Educational Technology Research and Development, 2020, 68, 2185-2214.	2.8	16
30	Longitudinal clustering of students' self-regulated learning behaviors in engineering design. Computers and Education, 2020, 153, 103899.	8.3	32
31	Time Really Matters: Understanding the Temporal Dimension of Online Learning Using Educational Data Mining. Journal of Educational Computing Research, 2019, 57, 1326-1347.	5.5	24
32	Twitter vs News: Concern Analysis of the 2018 California Wildfire Event. , 2019, , .		23
33	Exploring emotional and cognitive dynamics of Knowledge Building in grades 1 and 2. User Modeling and User-Adapted Interaction, 2019, 29, 789-820.	3.8	23
34	Beyond positive and negative emotions: Looking into the role of achievement emotions in discussion forums of MOOCs. Internet and Higher Education, 2019, 43, 100690.	6.5	63
35	The effects of transformative and non-transformative discourse on individual performance in collaborative-inquiry learning. Computers in Human Behavior, 2019, 98, 267-276.	8.5	13
36	Examining sequential patterns of self- and socially shared regulation of STEM learning in a CSCL environment. Computers and Education, 2019, 136, 34-48.	8.3	60

WANLI XING

#	Article	IF	CITATIONS
37	Using automatic image processing to analyze visual artifacts created by students in scientific argumentation. British Journal of Educational Technology, 2019, 50, 3391-3404.	6.3	12
38	Uncovering the sequential patterns in transformative and non-transformative discourse during collaborative inquiry learning. Internet and Higher Education, 2019, 41, 51-61.	6.5	23
39	Exploring the influences of MOOC design features on student performance and persistence. Distance Education, 2019, 40, 98-113.	3.9	35
40	Dropout Prediction in MOOCs: Using Deep Learning for Personalized Intervention. Journal of Educational Computing Research, 2019, 57, 547-570.	5.5	155
41	Understanding Elementary Students' Use of Digital Textbooks on Mobile Devices: A Structural Equation Modeling Approach. Journal of Educational Computing Research, 2019, 57, 755-776.	5.5	3
42	The Exploration of Automated Image Processing Techniques in the Study of Scientific Argumentation. Advances in Educational Technologies and Instructional Design Book Series, 2019, , 175-190.	0.2	1
43	The effect of sustained vs. faded scaffolding on students' argumentation in ill-structured problem solving. Computers in Human Behavior, 2018, 87, 436-449.	8.5	44
44	Autistic youth in 3D gameâ€based collaborative virtual learning: Associating avatar interaction patterns with embodied social presence. British Journal of Educational Technology, 2018, 49, 742-760.	6.3	31
45	Exploring the relationship between online discourse and commitment in Twitter professional learning communities. Computers and Education, 2018, 126, 388-398.	8.3	76
46	Quantifying the Effect of Informational Support on Membership Retention in Online Communities through Large-Scale Data Analytics. Computers in Human Behavior, 2018, 86, 227-234.	8.5	33
47	Exploring the temporal dimension of forum participation in MOOCs. Distance Education, 2018, 39, 353-372.	3.9	52
48	Fostering verbal and non-verbal social interactions in a 3D collaborative virtual learning environment: a case study of youth with Autism Spectrum Disorders learning social competence in iSocial. Educational Technology Research and Development, 2017, 65, 1015-1039.	2.8	28
49	Developing a Research Agenda for Human-Centered Data Science. , 2016, , .		29
50	Temporal predication of dropouts in MOOCs: Reaching the low hanging fruit through stacking generalization. Computers in Human Behavior, 2016, 58, 119-129.	8.5	183
51	Building models explaining student participation behavior in asynchronous online discussion. Computers and Education, 2016, 94, 241-251.	8.3	72
52	Exploring embodied social presence of youth with Autism in 3D collaborative virtual learning environment: A case study. Computers in Human Behavior, 2016, 55, 310-321.	8.5	37
53	Identifying Students' Mechanistic Explanations in Textual Responses to Science Questions with Association Rule Mining. , 2015, , .		1
54	"Twitter Archeology" of learning analytics and knowledge conferences. , 2015, , .		14

WANLI XING

#	Article	IF	CITATIONS
55	Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 2015, 47, 168-181.	8.5	211
56	Learning analytics in CSCL with a focus on assessment. , 2014, , .		18
57	Automatic text generation using deep learning: providing large-scale support for online learning communities. Interactive Learning Environments, 0, , 1-16.	6.4	6
58	Content Analysis of the CASEL Framework Using K–12 State SEL Standards. School Psychology Review, 0, , 1-15.	3.0	9