
Richard J. Nichols

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3088041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric Effect on the Length Dependence of Oligo(Phenylene ethynylene)-Based Molecular Junctions. Journal of Physical Chemistry C, 2022, 126, 3635-3645.	1.5	3
2	Electrochemical gating for single-molecule electronics with hybrid Au graphene contacts. Physical Chemistry Chemical Physics, 2022, 24, 6836-6844.	1.3	4
3	Redoxâ€Addressable Singleâ€Molecule Junctions Incorporating a Persistent Organic Radical**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
4	2,7- and 4,9-Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties, and Charge Transport in Single-Molecule Junctions. Journal of the American Chemical Society, 2022, 144, 12698-12714.	6.6	12
5	Molecular electronics at electrode–electrolyte interfaces. Current Opinion in Electrochemistry, 2021, 25, 100650.	2.5	9
6	Long-lived charged states of single porphyrin-tape junctions under ambient conditions. Nanoscale Horizons, 2021, 6, 49-58.	4.1	8
7	Selective Anchoring Groups for Molecular Electronic Junctions with ITO Electrodes. ACS Sensors, 2021, 6, 530-537.	4.0	8
8	A quantitative determination of lipid bilayer deposition efficiency using AFM. RSC Advances, 2021, 11, 19768-19778.	1.7	5
9	Molecular Structure–(Thermo)electric Property Relationships in Single-Molecule Junctions and Comparisons with Single- and Multiple-Parameter Models. Journal of the American Chemical Society, 2021, 143, 3817-3829.	6.6	35
10	STM studies of electron transfer through single molecules at electrode-electrolyte interfaces. Electrochimica Acta, 2021, 387, 138497.	2.6	2
11	Effect of Molecular Structure on Electrochemical Phase Behavior of Phospholipid Bilayers on Au(111). Langmuir, 2021, 37, 11887-11899.	1.6	7
12	pH control of conductance in a pyrazolyl Langmuir–Blodgett monolayer. Journal of Materials Chemistry C, 2021, 9, 2882-2889.	2.7	12
13	A Peierls Transition in Long Polymethine Molecular Wires: Evolution of Molecular Geometry and Single-Molecule Conductance. Journal of the American Chemical Society, 2021, 143, 20472-20481.	6.6	19
14	Towards the design of effective multipodal contacts for use in the construction of Langmuir–Blodgett films and molecular junctions. Journal of Materials Chemistry C, 2020, 8, 672-682.	2.7	13
15	Folding a Single-Molecule Junction. Nano Letters, 2020, 20, 7980-7986.	4.5	35
16	A Chemically Soldered Polyoxometalate Singleâ€Molecule Transistor. Angewandte Chemie, 2020, 132, 12127-12132.	1.6	13
17	Conductance Behavior of Tetraphenyl-Aza-BODIPYs. Journal of Physical Chemistry C, 2020, 124, 6479-6485.	1.5	14
18	A Chemically Soldered Polyoxometalate Singleâ€Molecule Transistor. Angewandte Chemie - International Edition, 2020, 59, 12029-12034.	7.2	49

#	Article	IF	CITATIONS
19	<i>In situ</i> formation of H-bonding imidazole chains in break-junction experiments. Nanoscale, 2020, 12, 7914-7920.	2.8	23
20	Charge transport in hybrid platinum/molecule/graphene single molecule junctions. Physical Chemistry Chemical Physics, 2020, 22, 13498-13504.	1.3	6
21	Single molecule vs. large area design of molecular electronic devices incorporating an efficient 2-aminepyridine double anchoring group. Nanoscale, 2019, 11, 15871-15880.	2.8	20
22	Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics. Angewandte Chemie, 2019, 131, 16736-16742.	1.6	3
23	Cross-conjugation increases the conductance of <i>meta</i> -connected fluorenones. Nanoscale, 2019, 11, 13720-13724.	2.8	25
24	Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics. Angewandte Chemie - International Edition, 2019, 58, 16583-16589.	7.2	26
25	Innenrücktitelbild: Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics (Angew. Chem. 46/2019). Angewandte Chemie, 2019, 131, 16851-16851.	1.6	Ο
26	Synthetic Control of Quantum Interference by Regulating Charge on a Single Atom in Heteroaromatic Molecular Junctions. Journal of Physical Chemistry Letters, 2019, 10, 6419-6424.	2.1	25
27	Charge transfer complexation boosts molecular conductance through Fermi level pinning. Chemical Science, 2019, 10, 2396-2403.	3.7	47
28	Effect of Asymmetric Anchoring Groups on Electronic Transport in Hybrid Metal/Molecule/Graphene Single Molecule Junctions. ChemPhysChem, 2019, 20, 1830-1836.	1.0	10
29	Unusual Length Dependence of the Conductance in Cumulene Molecular Wires. Angewandte Chemie, 2019, 131, 8466-8470.	1.6	11
30	Unusual Length Dependence of the Conductance in Cumulene Molecular Wires. Angewandte Chemie - International Edition, 2019, 58, 8378-8382.	7.2	39
31	Electrically transmissive alkyne-anchored monolayers on gold. Nanoscale, 2019, 11, 7976-7985.	2.8	16
32	Graphene-Contacted Single Molecular Junctions with Conjugated Molecular Wires. ACS Applied Nano Materials, 2019, 2, 12-18.	2.4	16
33	Detection of Metal–Molecule–Metal Junction Formation by Surface Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 2644-2651.	3.2	9
34	Charge transport at a molecular GaAs nanoscale junction. Faraday Discussions, 2018, 210, 397-408.	1.6	11
35	Gateway state-mediated, long-range tunnelling in molecular wires. Nanoscale, 2018, 10, 3060-3067.	2.8	25
36	Dual Control of Molecular Conductance through pH and Potential in Single-Molecule Devices. Nano Letters, 2018, 18, 1317-1322.	4.5	49

#	Article	IF	CITATIONS
37	Detecting Mechanochemical Atropisomerization within an STM Break Junction. Journal of the American Chemical Society, 2018, 140, 710-718.	6.6	38
38	Discrimination between hydrogen bonding and protonation in the spectra of a surface-enhanced Raman sensor. Physical Chemistry Chemical Physics, 2018, 20, 866-871.	1.3	22
39	Biomaterial Functionalized Graphene-Magnetite Nanocomposite: A Novel Approach for Simultaneous Removal of Anionic Dyes and Heavy-Metal Ions. ACS Sustainable Chemistry and Engineering, 2018, 6, 6328-6341.	3.2	91
40	Metal/molecule/metal junction studies of organometallic and coordination complexes; What can transition metals do for molecular electronics?. Polyhedron, 2018, 140, 25-34.	1.0	41
41	Facile synthesis, biofilm disruption properties and biocompatibility study of a poly-cationic peptide functionalized graphene–silver nanocomposite. Biomaterials Science, 2018, 6, 3356-3372.	2.6	31
42	Technical Effects of Molecule–Electrode Contacts in Graphene-Based Molecular Junctions. Journal of Physical Chemistry C, 2018, 122, 23200-23207.	1.5	8
43	Energy conversion at nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 333-351.	1.6	О
44	Bias-Driven Conductance Increase with Length in Porphyrin Tapes. Journal of the American Chemical Society, 2018, 140, 12877-12883.	6.6	84
45	Unconventional Single-Molecule Conductance Behavior for a New Heterocyclic Anchoring Group: Pyrazolyl. Journal of Physical Chemistry Letters, 2018, 9, 5364-5372.	2.1	33
46	Fast and straightforward analysis approach of charge transport data in single molecule junctions. Nanotechnology, 2018, 29, 325701.	1.3	6
47	Towards molecular electronic devices based on â€~all-carbon' wires. Nanoscale, 2018, 10, 14128-14138.	2.8	37
48	Conductance of â€~bare-bones' tripodal molecular wires. RSC Advances, 2018, 8, 23585-23590.	1.7	16
49	Carbon-contacted single molecule electrical junctions. Physical Chemistry Chemical Physics, 2018, 20, 24553-24560.	1.3	9
50	The Electrical Properties of Porphyrin Single Molecule Wires. ECS Meeting Abstracts, 2018, , .	0.0	0
51	Charge Transport through Single Molecules Connected to Semiconductor Electrodes. ECS Meeting Abstracts, 2018, , .	0.0	0
52	Single-Molecule Transport at a Rectifying GaAs Contact. Nano Letters, 2017, 17, 1109-1115.	4.5	28
53	Soft versus hard junction formation for α-terthiophene molecular wires and their charge transfer complexes. Journal of Chemical Physics, 2017, 146, .	1.2	6
54	The single-molecule electrical conductance of a rotaxane-hexayne supramolecular assembly. Nanoscale, 2017, 9, 355-361.	2.8	47

#	Article	IF	CITATIONS
55	Singleâ€Molecule Conductance Studies of Organometallic Complexes Bearing 3â€Thienyl Contacting Groups. Chemistry - A European Journal, 2017, 23, 2133-2143.	1.7	50
56	Influence of surface coverage on the formation of 4,4′-bipyridinium (viologen) single molecular junctions. Journal of Materials Chemistry C, 2017, 5, 11717-11723.	2.7	13
57	Single-Molecule Photocurrent at a Metal–Molecule–Semiconductor Junction. Nano Letters, 2017, 17, 6702-6707.	4.5	32
58	Single molecule electrochemistry in nanoscale junctions. Current Opinion in Electrochemistry, 2017, 4, 98-104.	2.5	16
59	Sideâ€Groupâ€Mediated Mechanical Conductance Switching in Molecular Junctions. Angewandte Chemie - International Edition, 2017, 56, 15378-15382.	7.2	74
60	Sideâ€Groupâ€Mediated Mechanical Conductance Switching in Molecular Junctions. Angewandte Chemie, 2017, 129, 15580-15584.	1.6	12
61	In Situ Surface-Enhanced Infrared Spectroscopy to Identify Oxygen Reduction Products in Nonaqueous Metal–Oxygen Batteries. Journal of Physical Chemistry C, 2017, 121, 19657-19667.	1.5	42
62	Symmetry Effects on Attenuation Factors in Graphene-Based Molecular Junctions. Journal of Physical Chemistry Letters, 2017, 8, 5987-5992.	2.1	15
63	Insulated molecular wires: inhibiting orthogonal contacts in metal complex based molecular junctions. Nanoscale, 2017, 9, 9902-9912.	2.8	30
64	Evidence for a hopping mechanism in metal single molecule metal junctions involving conjugated metal–terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy) ₂] ²⁺ (M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′ ionic liquid. Faraday Discussions, 2016, 193, 113-131.	terpyridin	e) in ²⁴
65	Single-Molecule Conductance of Viologen–Cucurbit[8]uril Host–Guest Complexes. ACS Nano, 2016, 10, 5212-5220.	7.3	82
66	Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations. Journal of Materials Chemistry C, 2016, 4, 9036-9043.	2.7	13
67	Graphene as a Promising Electrode for Low-Current Attenuation in Nonsymmetric Molecular Junctions. Nano Letters, 2016, 16, 6534-6540.	4.5	44
68	Single Molecule Nanoelectrochemistry in Electrical Junctions. Accounts of Chemical Research, 2016, 49, 2640-2648.	7.6	88
69	Experimental and Computational Studies of the Single-Molecule Conductance of Ru(II) and Pt(II) <i>trans</i> -Bis(acetylide) Complexes. Organometallics, 2016, 35, 2944-2954.	1.1	49
70	Low variability of single-molecule conductance assisted by bulky metal–molecule contacts. RSC Advances, 2016, 6, 75111-75121.	1.7	18
71	Electrochemically grafted single molecule junctions exploiting a chemical protection strategy. Electrochimica Acta, 2016, 220, 436-443.	2.6	11
72	Solvent Dependence of the Single Molecule Conductance of Oligoyne-Based Molecular Wires. Journal of Physical Chemistry C, 2016, 120, 15666-15674.	1.5	67

#	Article	IF	CITATIONS
73	Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i> . ACS Applied Materials & Interfaces, 2016, 8, 4963-4976.	4.0	377
74	Effects of Electrode–Molecule Binding and Junction Geometry on the Single-Molecule Conductance of bis-2,2′:6′,2″-Terpyridine-based Complexes. Inorganic Chemistry, 2016, 55, 2691-2700.	1.9	22
75	Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ Surface-Enhanced Infrared Spectroscopy. Journal of the American Chemical Society, 2016, 138, 3745-3751.	6.6	79
76	Resonant transport and electrostatic effects in single-molecule electrical junctions. Physical Review B, 2015, 91, .	1.1	28
77	Electrical characterization of single molecule and Langmuir–Blodgett monomolecular films of a pyridine-terminated oligo(phenylene-ethynylene) derivative. Beilstein Journal of Nanotechnology, 2015, 6, 1145-1157.	1.5	17
78	Single-molecule contacts exposed. Nature Materials, 2015, 14, 465-466.	13.3	9
79	New Insights into Single-Molecule Junctions Using a Robust, Unsupervised Approach to Data Collection and Analysis. Journal of the American Chemical Society, 2015, 137, 9971-9981.	6.6	50
80	Single-Molecule Electronics: Chemical and Analytical Perspectives. Annual Review of Analytical Chemistry, 2015, 8, 389-417.	2.8	80
81	Giant Single-Molecule Anisotropic Magnetoresistance at Room Temperature. Journal of the American Chemical Society, 2015, 137, 5923-5929.	6.6	31
82	Synthesis, Electrochemistry, and Single-Molecule Conductance of Bimetallic 2,3,5,6-Tetra(pyridine-2-yl)pyrazine-Based Complexes. Inorganic Chemistry, 2015, 54, 5487-5494.	1.9	37
83	The electrochemical characterisation of graphite felts. Journal of Electroanalytical Chemistry, 2015, 747, 29-38.	1.9	74
84	Electrochemical Single-Molecule Transistors with Optimized Gate Coupling. Journal of the American Chemical Society, 2015, 137, 14319-14328.	6.6	94
85	Gating of single molecule junction conductance by charge transfer complex formation. Nanoscale, 2015, 7, 18949-18955.	2.8	41
86	Single Gold Atom Containing Oligo(phenylene)ethynylene: Assembly into LB Films and Electrical Characterization. Journal of Physical Chemistry C, 2015, 119, 784-793.	1.5	30
87	Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface. Nano Letters, 2015, 15, 275-280.	4.5	73
88	Towards the Fabrication of the Topâ€Contact Electrode in Molecular Junctions by Photoreduction of a Metal Precursor. Chemistry - A European Journal, 2014, 20, 3421-3426.	1.7	13
89	Molecular Electronic Devices: From an Organometallic Monolayer to an Organic Monolayer Covered by Metal Nanoislands: A Simple Thermal Protocol for the Fabrication of the Top Contact Electrode in Molecular Electronic Devices (Adv. Mater. Interfaces 9/2014). Advanced Materials Interfaces, 2014, 1, .	1.9	1
90	lonic Liquid Based Approach for Single-Molecule Electronics with Cobalt Contacts. Langmuir, 2014, 30, 14329-14336.	1.6	19

#	Article	IF	CITATIONS
91	From an Organometallic Monolayer to an Organic Monolayer Covered by Metal Nanoislands: A Simple Thermal Protocol for the Fabrication of the Top Contact Electrode in Molecular Electronic Devices. Advanced Materials Interfaces, 2014, 1, 1400128.	1.9	21
92	Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films. Journal of Materials Chemistry C, 2014, 2, 7348-7355.	2.7	36
93	Simplifying the conductance profiles of molecular junctions: the use of the trimethylsilylethynyl moiety as a molecule–gold contact. Dalton Transactions, 2013, 42, 338-341.	1.6	83
94	Electrochemistry and in situscanning tunnelling microscopy of pure and redox-marked DNA- and UNA-based oligonucleotides on Au(111)-electrode surfaces. Physical Chemistry Chemical Physics, 2013, 15, 776-786.	1.3	14
95	Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale, 2013, 5, 5549.	2.8	204
96	NO adsorption on Pt (111)/Bi surfaces. Electrochemistry Communications, 2013, 34, 37-40.	2.3	5
97	Controlling the Structural and Electrical Properties of Diacid Oligo(Phenylene Ethynylene) Langmuir–Blodgett Films. Chemistry - A European Journal, 2013, 19, 5352-5363.	1.7	16
98	Biotechnological Potential of Soil Isolate, <i>Flavobacterium mizutaii</i> for Removal of Azo Dyes: Kinetics, Isotherm, and Microscopic Study. Separation Science and Technology, 2012, 47, 1913-1925.	1.3	16
99	Single-Molecule Electrochemical Gating in Ionic Liquids. Journal of the American Chemical Society, 2012, 134, 16817-16826.	6.6	118
100	Surface functionalization of Aspergillus versicolor mycelia: in situ fabrication of cadmium sulphide nanoparticles and removal of cadmium ions from aqueous solution. RSC Advances, 2012, 2, 3000.	1.7	40
101	Single-molecule conductance determinations on HS(CH ₂) ₄ O(CH ₂) ₄ SH and HS(CH ₂) ₂ O(CH ₂	0.7	9
102	Acetylene Used as a New Linker for Molecular Junctions in Phenylene–Ethynylene Oligomer Langmuir–Blodgett Films. Journal of Physical Chemistry C, 2012, 116, 9142-9150.	1.5	22
103	Polycation Induced Potential Dependent Structural Transitions of Oligonucleotide Monolayers on Au(111)-Surfaces. Journal of the American Chemical Society, 2012, 134, 19092-19098.	6.6	15
104	Comparison of the Conductance of Three Types of Porphyrinâ€Based Molecular Wires: <i>β,meso,βâ€</i> Fused Tapes, <i>meso</i> â€Butadiyneâ€Linked and Twisted <i>mesoâ€meso</i> Linked Oligo Advanced Materials, 2012, 24, 653-657.	omers.	101
105	Surface functionalization of electro-deposited nickel. Physical Chemistry Chemical Physics, 2011, 13, 17987.	1.3	18
106	Looking Ahead: Challenges and Opportunities in Organometallic Chemistryâ€. Organometallics, 2011, 30, 7-12.	1.1	22
107	Directionally Oriented LB Films of an OPE Derivative: Assembly, Characterization, and Electrical Properties. Langmuir, 2011, 27, 3600-3610.	1.6	29
108	Large Conductance Changes in Peptide Single Molecule Junctions Controlled by pH. Journal of Physical Chemistry C, 2011, 115, 8361-8368.	1.5	60

#	Article	IF	CITATIONS
109	Ionic Liquids As a Medium for STM-Based Single Molecule Conductance Determination: An Exploration Employing Alkanedithiols. Journal of Physical Chemistry C, 2011, 115, 21402-21408.	1.5	15
110	Role of axially coordinated surface sites for electrochemically controlled carbon monoxide adsorption on single crystal copper electrodes. Physical Chemistry Chemical Physics, 2011, 13, 5242.	1.3	41
111	Long-range electron tunnelling in oligo-porphyrin molecular wires. Nature Nanotechnology, 2011, 6, 517-523.	15.6	312
112	Metal–Molecule–Metal Junctions in Langmuir–Blodgett Films Using a New Linker: Trimethylsilane. Chemistry - A European Journal, 2010, 16, 13398-13405.	1.7	33
113	Electroreduction of oxygen on gold-supported nanostructured palladium films in acid solutions. Electrochimica Acta, 2010, 55, 6768-6774.	2.6	49
114	Microbial Synthesis of Multishaped Gold Nanostructures. Small, 2010, 6, 1012-1021.	5.2	129
115	Substrate Structural Effects on the Synthesis and Electrochemical Properties of Platinum Nanoparticles on Highly Oriented Pyrolytic Graphite. Journal of Physical Chemistry C, 2010, 114, 18439-18448.	1.5	38
116	The Impact of <i>E</i> â^' <i>Z</i> Photo-Isomerization on Single Molecular Conductance. Nano Letters, 2010, 10, 2019-2023.	4.5	76
117	Identifying Diversity in Nanoscale Electrical Break Junctions. Journal of the American Chemical Society, 2010, 132, 9157-9164.	6.6	124
118	Electrochemical Scanning Tunneling Spectroscopy of Redox-Active Molecules Bound by Auâ^'C Bonds. Journal of the American Chemical Society, 2010, 132, 2494-2495.	6.6	59
119	Fabrication, Characterization, and Electrical Properties of Langmuirâ^'Blodgett Films of an Acid Terminated Phenyleneâ^'Ethynylene Oligomer. Chemistry of Materials, 2010, 22, 2041-2049.	3.2	25
120	The experimental determination of the conductance of single molecules. Physical Chemistry Chemical Physics, 2010, 12, 2801.	1.3	153
121	Adverse effects of asymmetric contacts on single molecule conductances of HS(CH2)nCOOH in nanoelectrical junctions. Nanotechnology, 2009, 20, 125203.	1.3	37
122	Environmental Effects on the Single Molecule Conductance of bis(thiahexyl)oligothiophenes. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	0
123	Biosorption of hexavalent chromium by Termitomyces clypeatus biomass: Kinetics and transmission electron microscopic study. Journal of Hazardous Materials, 2009, 167, 685-691.	6.5	50
124	Structural and Nanomechanical Properties of Termitomyces clypeatus Cell Wall and Its Interaction with Chromium(VI). Journal of Physical Chemistry B, 2009, 113, 1485-1492.	1.2	12
125	Oligoyne Single Molecule Wires. Journal of the American Chemical Society, 2009, 131, 15647-15654.	6.6	206
126	Adsorption Behavior of Mercury on Functionalized Aspergillus versicolor Mycelia: Atomic Force Microscopic Study. Langmuir, 2009, 25, 360-366.	1.6	47

#	Article	IF	CITATIONS
127	Molecular Dynamics and Electrochemical Investigations of a pH-Responsive Peptide Monolayer. Journal of Physical Chemistry C, 2009, 113, 6792-6799.	1.5	13
128	Gold Nanoparticles: Microbial Synthesis and Application in Water Hygiene Management. Langmuir, 2009, 25, 8192-8199.	1.6	299
129	Impact of Junction Formation Method and Surface Roughness on Single Molecule Conductance. Journal of Physical Chemistry C, 2009, 113, 5823-5833.	1.5	139
130	Anomalous length and voltage dependence of single molecule conductance. Physical Chemistry Chemical Physics, 2009, 11, 10831.	1.3	43
131	Single-Molecule Solvation-Shell Sensing. Physical Review Letters, 2009, 102, 086801.	2.9	89
132	Influence of Conformational Flexibility on Single-Molecule Conductance in Nano-Electrical Junctions. Journal of Physical Chemistry C, 2009, 113, 18884-18890.	1.5	22
133	Synthesis and characterization of monomeric and polymeric Pd(II) and Pt(II) complexes of 3,4-ethylenedioxythiophene-functionalized phosphine ligands. Journal of Materials Chemistry, 2009, 19, 1850.	6.7	18
134	First- and second-order phase transitions in the adlayer of biadipate on Au(111). Physical Chemistry Chemical Physics, 2009, 11, 688-693.	1.3	3
135	A molecular wire incorporating a robust hexanuclear platinum cluster. Physical Chemistry Chemical Physics, 2009, 11, 5198.	1.3	24
136	Site-specific interactions of copper(II) ions with heparin revealed with complementary (SRCD, NMR,) Tj ETQq0 0	0 rgBT /Oʻ 1.1	verlock 10 Tf :
137	Adsorption of rhodamine B on Rhizopus oryzae: Role of functional groups and cell wall components. Colloids and Surfaces B: Biointerfaces, 2008, 65, 30-34.	2.5	82
138	Shaping Supramolecular Nanofibers with Nanoparticles Forming Complementary Hydrogen Bonds. Angewandte Chemie - International Edition, 2008, 47, 1861-1865.	7.2	82
139	Structureâ^'Property Relationships in Redox-Gated Single Molecule Junctions â^' A Comparison of Pyrrolo-Tetrathiafulvalene and Viologen Redox Groups. Journal of the American Chemical Society, 2008, 130, 12204-12205.	6.6	108
140	Single Molecule Conductance of Porphyrin Wires with Ultralow Attenuation. Journal of the American Chemical Society, 2008, 130, 8582-8583.	6.6	233
141	Selective Detection of Protein Secondary Structural Changes in Solution Proteinâ^'Polysaccharide Complexes Using Vibrational Circular Dichroism (VCD). Journal of the American Chemical Society, 2008, 130, 2138-2139.	6.6	19
142	Bifunctional Electrocatalysis in Ptâ^'Ru Nanoparticle Systems. Langmuir, 2008, 24, 2191-2199.	1.6	59
143	A Comprehensive Study of the Single Molecule Conductance of α,ï‰-Dicarboxylic Acid-Terminated Alkanes. Journal of Physical Chemistry C, 2008, 112, 3941-3948.	1.5	53
144	Interaction of Chromium with Resistant Strain Aspergillus versicolor: Investigation with Atomic Force Microscopy and Other Physical Studies. Langmuir, 2008, 24, 8643-8650.	1.6	46

#	Article	IF	CITATIONS
145	Variable contact gap single-molecule conductance determination for a series of conjugated molecular bridges. Journal of Physics Condensed Matter, 2008, 20, 374119.	0.7	49
146	A Study on the Adsorption Mechanism of Mercury on <i>Aspergillus versicolor</i> Biomass. Environmental Science & Technology, 2007, 41, 8281-8287.	4.6	183
147	Chemical control of double barrier tunnelling in α,ï‰-dithiaalkane molecular wires. Chemical Communications, 2007, , 3939.	2.2	30
148	Single-Molecule Conductance of Redox Molecules in Electrochemical Scanning Tunneling Microscopyâ€. Journal of Physical Chemistry B, 2007, 111, 6703-6712.	1.2	100
149	Biosorption of chromium by Termitomyces clypeatus. Colloids and Surfaces B: Biointerfaces, 2007, 60, 46-54.	2.5	118
150	Catalysts under the microscope. Nature Nanotechnology, 2007, 2, 270-271.	15.6	5
151	Adsorption Behavior of Rhodamine B onRhizopusoryzaeBiomass. Langmuir, 2006, 22, 7265-7272.	1.6	188
152	Thermal gating of the single molecule conductance of alkanedithiols. Faraday Discussions, 2006, 131, 253-264.	1.6	108
153	Precision control of single-molecule electrical junctions. Nature Materials, 2006, 5, 995-1002.	13.3	294
154	A [Ni(cyclam)]2+-functionalised poly(3,4-ethylenedioxythiophene): Synthesis, electropolymerisation and characterisation of the polymer by cyclic voltammetry and in situ reflectance FTIR spectroscopy. Inorganica Chimica Acta, 2006, 359, 3491-3496.	1.2	7
155	Surface termination and hydrogen bubble adhesion on Si(100) surfaces during anisotropic dissolution in aqueous KOH. Journal of Electroanalytical Chemistry, 2006, 597, 1-12.	1.9	36
156	Variable-Temperature Measurements of the Single-Molecule Conductance of Double-Stranded DNA. Angewandte Chemie - International Edition, 2006, 45, 5499-5502.	7.2	63
157	Single-Molecule Conductance Measurements of Single- and Double-Stranded DNA Oligonucleotides. ChemPhysChem, 2006, 7, 94-98.	1.0	94
158	A combined top-down bottom-up approach for introducing nanoparticle networks into nanoelectrode gaps. Nanotechnology, 2006, 17, 3333-3339.	1.3	34
159	Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces. Chemical Physics, 2005, 319, 210-221.	0.9	37
160	A reflectance anisotropy spectroscopy study of underpotential deposition of copper onto Au(110). Physica Status Solidi (B): Basic Research, 2005, 242, 2595-2600.	0.7	3
161	Electrochemical reactivity in nanoscale domains: O2 reduction on a fullerene modified gold surface. Physical Chemistry Chemical Physics, 2005, 7, 1293.	1.3	18
162	Electrosynthesis and characterization of biotin-functionalized poly(terthiophene) copolymers, and their response to avidin. Journal of Materials Chemistry, 2005, 15, 1186.	6.7	34

#	Article	IF	CITATIONS
163	Comment on "Monitoring the Transitions of the Charge-Induced Reconstruction of Au(110) by Reflection Anisotropy Spectroscopy― Physical Review Letters, 2004, 92, 199707.	2.9	23
164	The analysis of the fibroblast growth factor ligand-receptor complex using a quartz crystal microbalance-dissipation. International Journal of Experimental Pathology, 2004, 85, A72-A73.	0.6	0
165	A quantitative evaluation of the adsorption of citrate on Au(111) using SNIFTIRS. Journal of Electroanalytical Chemistry, 2004, 563, 33-39.	1.9	61
166	Copper underpotential deposition at high index single crystal surfaces of Au. Journal of Electroanalytical Chemistry, 2004, 570, 157-161.	1.9	31
167	Fullerene-linked Pt nanoparticle assemblies. Chemical Communications, 2004, , 1532.	2.2	22
168	Fullerene monolayers adsorbed on high index gold single crystal surfaces. Physical Chemistry Chemical Physics, 2004, 6, 619.	1.3	25
169	Wiring nanoparticles with redox molecules. Faraday Discussions, 2004, 125, 179-194.	1.6	45
170	Molecular Wire Formation from Viologen Assemblies. Langmuir, 2004, 20, 7694-7702.	1.6	62
171	Measurement of single molecule conductivity using the spontaneous formation of molecular wires. Physical Chemistry Chemical Physics, 2004, 6, 4330.	1.3	340
172	Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles. Journal of the American Chemical Society, 2004, 126, 10076-10084.	6.6	670
173	An in-situ infrared spectroscopic study of the adsorption of citrate on Au(111) electrodes. Journal of Electroanalytical Chemistry, 2003, 542, 67-74.	1.9	75
174	Redox State Dependence of Single Molecule Conductivity. Journal of the American Chemical Society, 2003, 125, 15294-15295.	6.6	391
175	Adsorption of Pyridine on Au(110) as Measured by Reflection Anisotropy Spectroscopy. Journal of the Electrochemical Society, 2003, 150, E233.	1.3	29
176	A gravimetric analysis of protein–oligosaccharide interactions. Biochemical Society Transactions, 2003, 31, 349-351.	1.6	5
177	An FTIR study of the surface chemistry of the dynamic Si(100) surface during etching in alkaline solution. Faraday Discussions, 2002, 121, 167-180.	1.6	15
178	Electrochemical, spectroscopic and SPM evidence for the controlled formation of self-assembled monolayers and organised multilayers of ferrocenyl alkyl thiols on Au(111). Physical Chemistry Chemical Physics, 2001, 3, 3411-3419.	1.3	45
179	Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2001, 515, 101-112.	1.9	341
180	Time Domain Impedance Spectroscopy for Probing the Termination of Silicon (100) Surfaces in Aqueous KOH. Journal of Physical Chemistry B, 2001, 105, 12508-12515.	1.2	12

#	Article	IF	CITATIONS
181	A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature, 2000, 408, 67-69.	13.7	732
182	Reflection Anisotropy Spectroscopy: A New Probe for the Solid-Liquid Interface. Physical Review Letters, 2000, 85, 4618-4621.	2.9	74
183	An STM investigation of surface diffusion on iodine modified Au(111). Physical Chemistry Chemical Physics, 2000, 2, 1439-1444.	1.3	16
184	Diode-like electron transfer across nanostructured films containing a redox ligand. Journal of Materials Chemistry, 2000, 10, 79-83.	6.7	94
185	An approach to long-range electron transfer mechanisms in metalloproteins: In situ scanning tunneling microscopy with submolecular resolution. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1379-1384.	3.3	135
186	Redox-Connected Multilayers of Discrete Gold Particles: A Novel Electroactive Nanomaterial. Advanced Materials, 1999, 11, 737-740.	11.1	84
187	A combined in situ infrared spectroscopy and scanning tunnelling microscopy study of ethyl xanthate adsorption on Au(111). Physical Chemistry Chemical Physics, 1999, 1, 3661-3666.	1.3	18
188	In-Situ Infrared Spectroscopic and Scanning Tunneling Microscopy Investigations of the Chemisorption Phases of Uracil, Thymine, and 3-Methyl Uracil on Au(111) Electrodes. Langmuir, 1999, 15, 4875-4883.	1.6	71
189	Redox-Connected Multilayers of Discrete Gold Particles: A Novel Electroactive Nanomaterial. Advanced Materials, 1999, 11, 737-740.	11.1	1
190	Metalloprotein adsorption on Au(111) and polycrystalline platinum investigated by in situ scanning tunneling microscopy with molecular and submolecular resolution. Electrochimica Acta, 1998, 43, 2889-2897.	2.6	24
191	Linear correlation between surface stress and surface charge in anion adsorption on Au(111). Journal of Electroanalytical Chemistry, 1998, 452, 199-202.	1.9	129
192	An in situ STM study of sulphate adsorption on copper(111) in acidic aqueous electrolytes. Journal of Electroanalytical Chemistry, 1998, 456, 153-160.	1.9	72
193	In-situ infrared spectroscopic studies of thymine adsorption on a Au(111) electrode. Journal of Electroanalytical Chemistry, 1998, 454, 107-113.	1.9	58
194	Benzotriazole Adsorption and Inhibition of Cu(100) Corrosion in HCl:  A Combined in Situ STM and in Situ FTIR Spectroscopy Study. Journal of Physical Chemistry B, 1998, 102, 5859-5865.	1.2	74
195	Adsorbate-Induced Etching of Au(111) Surfaces:Â A Combined in-Situ Infrared Spectroscopy and Scanning Tunneling Microscopy Study. Langmuir, 1997, 13, 85-90.	1.6	26
196	Adsorption of Thymine on Gold Single-Crystal Electrodes. Journal of Physical Chemistry B, 1997, 101, 754-765.	1.2	97
197	In situ monitoring of intrinsic stress changes during copper electrodeposition on Au(111). Surface Science, 1997, 388, 141-149.	0.8	36
198	Nickel hydroxide electrocatalysts for alcohol oxidation reactions: An evaluation by infrared spectroscopy and electrochemical methods. Catalysis Today, 1997, 38, 483-492.	2.2	109

#	Article	IF	CITATIONS
199	Structure and Dynamics of Tetramethylthiourea Adsorption on Au(111) Studied by in Situ Scanning Tunneling Microscopy. Langmuir, 1996, 12, 3060-3066.	1.6	40
200	Classification of growth behaviour for copper on various substrates with in-situ scanning probe microscopy. Surface Science, 1995, 335, 110-119.	0.8	36
201	An electropainting method for coating STM tips for electrochemical measurements. Surface and Coatings Technology, 1994, 67, 139-144.	2.2	24
202	Effective Insulation of Scanning Tunneling Microscopy Tips for Electrochemical Studies Using an Electropainting Method. Journal of the Electrochemical Society, 1993, 140, 1281-1284.	1.3	122
203	The Application of Scanning Tunneling Microscopy to Electrochemistry. , 1992, , 275-292.		12
204	An in situ scanning tunneling microscopy study of the initial stages of bulk copper deposition on gold(100): the rim effect. Langmuir, 1992, 8, 2572-2576.	1.6	43
205	Atomic structure of Cu adlayers on Au(100) and Au(111) electrodes observed byin situscanning tunneling microscopy. Physical Review Letters, 1990, 64, 2929-2932.	2.9	396
206	Redoxâ€Addressable Singleâ€Molecule Junctions Incorporating a Persistent Organic Radical**. Angewandte Chemie, 0, , .	1.6	0