Richard J. Nichols

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3088041/publications.pdf

Version: 2024-02-01

206 papers 12,606 citations

23500 58 h-index 29081 104 g-index

213 all docs

213 docs citations

times ranked

213

11258 citing authors

#	Article	IF	Citations
1	A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature, 2000, 408, 67-69.	13.7	732
2	Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles. Journal of the American Chemical Society, 2004, 126, 10076-10084.	6.6	670
3	Atomic structure of Cu adlayers on Au(100) and Au(111) electrodes observed byin situscanning tunneling microscopy. Physical Review Letters, 1990, 64, 2929-2932.	2.9	396
4	Redox State Dependence of Single Molecule Conductivity. Journal of the American Chemical Society, 2003, 125, 15294-15295.	6.6	391
5	Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i> . ACS Applied Materials & Samp; Interfaces, 2016, 8, 4963-4976.	4.0	377
6	Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2001, 515, 101-112.	1.9	341
7	Measurement of single molecule conductivity using the spontaneous formation of molecular wires. Physical Chemistry Chemical Physics, 2004, 6, 4330.	1.3	340
8	Long-range electron tunnelling in oligo-porphyrin molecular wires. Nature Nanotechnology, 2011, 6, 517-523.	15.6	312
9	Gold Nanoparticles: Microbial Synthesis and Application in Water Hygiene Management. Langmuir, 2009, 25, 8192-8199.	1.6	299
10	Precision control of single-molecule electrical junctions. Nature Materials, 2006, 5, 995-1002.	13.3	294
11	Single Molecule Conductance of Porphyrin Wires with Ultralow Attenuation. Journal of the American Chemical Society, 2008, 130, 8582-8583.	6.6	233
12	Oligoyne Single Molecule Wires. Journal of the American Chemical Society, 2009, 131, 15647-15654.	6.6	206
13	Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale, 2013, 5, 5549.	2.8	204
14	Adsorption Behavior of Rhodamine B onRhizopusoryzaeBiomass. Langmuir, 2006, 22, 7265-7272.	1.6	188
15	A Study on the Adsorption Mechanism of Mercury on <i>Aspergillus versicolor</i> Biomass. Environmental Science & Environmental	4.6	183
16	The experimental determination of the conductance of single molecules. Physical Chemistry Chemical Physics, 2010, 12, 2801.	1.3	153
17	Impact of Junction Formation Method and Surface Roughness on Single Molecule Conductance. Journal of Physical Chemistry C, 2009, 113, 5823-5833.	1.5	139
18	An approach to long-range electron transfer mechanisms in metalloproteins: In situ scanning tunneling microscopy with submolecular resolution. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1379-1384.	3.3	135

#	Article	IF	Citations
19	Linear correlation between surface stress and surface charge in anion adsorption on Au(111). Journal of Electroanalytical Chemistry, 1998, 452, 199-202.	1.9	129
20	Microbial Synthesis of Multishaped Gold Nanostructures. Small, 2010, 6, 1012-1021.	5.2	129
21	Identifying Diversity in Nanoscale Electrical Break Junctions. Journal of the American Chemical Society, 2010, 132, 9157-9164.	6.6	124
22	Effective Insulation of Scanning Tunneling Microscopy Tips for Electrochemical Studies Using an Electropainting Method. Journal of the Electrochemical Society, 1993, 140, 1281-1284.	1.3	122
23	Biosorption of chromium by Termitomyces clypeatus. Colloids and Surfaces B: Biointerfaces, 2007, 60, 46-54.	2.5	118
24	Single-Molecule Electrochemical Gating in Ionic Liquids. Journal of the American Chemical Society, 2012, 134, 16817-16826.	6.6	118
25	Nickel hydroxide electrocatalysts for alcohol oxidation reactions: An evaluation by infrared spectroscopy and electrochemical methods. Catalysis Today, 1997, 38, 483-492.	2.2	109
26	Thermal gating of the single molecule conductance of alkanedithiols. Faraday Discussions, 2006, 131, 253-264.	1.6	108
27	Structureâ^'Property Relationships in Redox-Gated Single Molecule Junctions â^' A Comparison of Pyrrolo-Tetrathiafulvalene and Viologen Redox Groups. Journal of the American Chemical Society, 2008, 130, 12204-12205.	6.6	108
28	Comparison of the Conductance of Three Types of Porphyrinâ€Based Molecular Wires: <i>β,meso,βâ€</i> Fused Tapes, <i>meso</i> â€Butadiyneâ€Linked and Twisted <i>mesoâ€meso</i> Linked Olig Advanced Materials, 2012, 24, 653-657.	om e rs.	101
29	Single-Molecule Conductance of Redox Molecules in Electrochemical Scanning Tunneling Microscopyâ€. Journal of Physical Chemistry B, 2007, 111, 6703-6712.	1.2	100
30	Adsorption of Thymine on Gold Single-Crystal Electrodes. Journal of Physical Chemistry B, 1997, 101, 754-765.	1.2	97
31	Diode-like electron transfer across nanostructured films containing a redox ligand. Journal of Materials Chemistry, 2000, 10, 79-83.	6.7	94
32	Single-Molecule Conductance Measurements of Single- and Double-Stranded DNA Oligonucleotides. ChemPhysChem, 2006, 7, 94-98.	1.0	94
33	Electrochemical Single-Molecule Transistors with Optimized Gate Coupling. Journal of the American Chemical Society, 2015, 137, 14319-14328.	6.6	94
34	Biomaterial Functionalized Graphene-Magnetite Nanocomposite: A Novel Approach for Simultaneous Removal of Anionic Dyes and Heavy-Metal Ions. ACS Sustainable Chemistry and Engineering, 2018, 6, 6328-6341.	3.2	91
35	Single-Molecule Solvation-Shell Sensing. Physical Review Letters, 2009, 102, 086801.	2.9	89
36	Single Molecule Nanoelectrochemistry in Electrical Junctions. Accounts of Chemical Research, 2016, 49, 2640-2648.	7.6	88

#	Article	IF	Citations
37	Redox-Connected Multilayers of Discrete Gold Particles: A Novel Electroactive Nanomaterial. Advanced Materials, 1999, 11, 737-740.	11.1	84
38	Bias-Driven Conductance Increase with Length in Porphyrin Tapes. Journal of the American Chemical Society, 2018, 140, 12877-12883.	6.6	84
39	Simplifying the conductance profiles of molecular junctions: the use of the trimethylsilylethynyl moiety as a molecule–gold contact. Dalton Transactions, 2013, 42, 338-341.	1.6	83
40	Adsorption of rhodamine B on Rhizopus oryzae: Role of functional groups and cell wall components. Colloids and Surfaces B: Biointerfaces, 2008, 65, 30-34.	2.5	82
41	Shaping Supramolecular Nanofibers with Nanoparticles Forming Complementary Hydrogen Bonds. Angewandte Chemie - International Edition, 2008, 47, 1861-1865.	7.2	82
42	Single-Molecule Conductance of Viologen–Cucurbit[8]uril Host–Guest Complexes. ACS Nano, 2016, 10, 5212-5220.	7.3	82
43	Single-Molecule Electronics: Chemical and Analytical Perspectives. Annual Review of Analytical Chemistry, 2015, 8, 389-417.	2.8	80
44	Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ Surface-Enhanced Infrared Spectroscopy. Journal of the American Chemical Society, 2016, 138, 3745-3751.	6.6	79
45	The Impact of <i>E</i> â^' <i>Z</i> Photo-Isomerization on Single Molecular Conductance. Nano Letters, 2010, 10, 2019-2023.	4.5	76
46	An in-situ infrared spectroscopic study of the adsorption of citrate on Au(111) electrodes. Journal of Electroanalytical Chemistry, 2003, 542, 67-74.	1.9	75
47	Benzotriazole Adsorption and Inhibition of Cu(100) Corrosion in HCl:  A Combined in Situ STM and in Situ FTIR Spectroscopy Study. Journal of Physical Chemistry B, 1998, 102, 5859-5865.	1.2	74
48	Reflection Anisotropy Spectroscopy: A New Probe for the Solid-Liquid Interface. Physical Review Letters, 2000, 85, 4618-4621.	2.9	74
49	The electrochemical characterisation of graphite felts. Journal of Electroanalytical Chemistry, 2015, 747, 29-38.	1.9	74
50	Sideâ€Groupâ€Mediated Mechanical Conductance Switching in Molecular Junctions. Angewandte Chemie - International Edition, 2017, 56, 15378-15382.	7.2	74
51	Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface. Nano Letters, 2015, 15, 275-280.	4.5	7 3
52	An in situ STM study of sulphate adsorption on copper(111) in acidic aqueous electrolytes. Journal of Electroanalytical Chemistry, 1998, 456, 153-160.	1.9	72
53	In-Situ Infrared Spectroscopic and Scanning Tunneling Microscopy Investigations of the Chemisorption Phases of Uracil, Thymine, and 3-Methyl Uracil on Au(111) Electrodes. Langmuir, 1999, 15, 4875-4883.	1.6	71
54	Solvent Dependence of the Single Molecule Conductance of Oligoyne-Based Molecular Wires. Journal of Physical Chemistry C, 2016, 120, 15666-15674.	1.5	67

#	Article	IF	CITATIONS
55	Variable-Temperature Measurements of the Single-Molecule Conductance of Double-Stranded DNA. Angewandte Chemie - International Edition, 2006, 45, 5499-5502.	7.2	63
56	Molecular Wire Formation from Viologen Assemblies. Langmuir, 2004, 20, 7694-7702.	1.6	62
57	A quantitative evaluation of the adsorption of citrate on Au(111) using SNIFTIRS. Journal of Electroanalytical Chemistry, 2004, 563, 33-39.	1.9	61
58	Large Conductance Changes in Peptide Single Molecule Junctions Controlled by pH. Journal of Physical Chemistry C, 2011, 115, 8361-8368.	1.5	60
59	Bifunctional Electrocatalysis in Ptâ^'Ru Nanoparticle Systems. Langmuir, 2008, 24, 2191-2199.	1.6	59
60	Electrochemical Scanning Tunneling Spectroscopy of Redox-Active Molecules Bound by Auâ^'C Bonds. Journal of the American Chemical Society, 2010, 132, 2494-2495.	6.6	59
61	In-situ infrared spectroscopic studies of thymine adsorption on a $Au(111)$ electrode. Journal of Electroanalytical Chemistry, 1998, 454, 107-113.	1.9	58
62	A Comprehensive Study of the Single Molecule Conductance of \hat{l}_{\pm} , \hat{l}_{∞} -Dicarboxylic Acid-Terminated Alkanes. Journal of Physical Chemistry C, 2008, 112, 3941-3948.	1.5	53
63	Biosorption of hexavalent chromium by Termitomyces clypeatus biomass: Kinetics and transmission electron microscopic study. Journal of Hazardous Materials, 2009, 167, 685-691.	6.5	50
64	New Insights into Single-Molecule Junctions Using a Robust, Unsupervised Approach to Data Collection and Analysis. Journal of the American Chemical Society, 2015, 137, 9971-9981.	6.6	50
65	Singleâ€Molecule Conductance Studies of Organometallic Complexes Bearing 3â€Thienyl Contacting Groups. Chemistry - A European Journal, 2017, 23, 2133-2143.	1.7	50
66	Variable contact gap single-molecule conductance determination for a series of conjugated molecular bridges. Journal of Physics Condensed Matter, 2008, 20, 374119.	0.7	49
67	Electroreduction of oxygen on gold-supported nanostructured palladium films in acid solutions. Electrochimica Acta, 2010, 55, 6768-6774.	2.6	49
68	Experimental and Computational Studies of the Single-Molecule Conductance of Ru(II) and Pt(II) <i>trans</i> -Bis(acetylide) Complexes. Organometallics, 2016, 35, 2944-2954.	1.1	49
69	Dual Control of Molecular Conductance through pH and Potential in Single-Molecule Devices. Nano Letters, 2018, 18, 1317-1322.	4.5	49
70	A Chemically Soldered Polyoxometalate Singleâ€Molecule Transistor. Angewandte Chemie - International Edition, 2020, 59, 12029-12034.	7.2	49
71	Adsorption Behavior of Mercury on Functionalized Aspergillus versicolor Mycelia: Atomic Force Microscopic Study. Langmuir, 2009, 25, 360-366.	1.6	47
72	The single-molecule electrical conductance of a rotaxane-hexayne supramolecular assembly. Nanoscale, 2017, 9, 355-361.	2.8	47

#	Article	IF	Citations
73	Charge transfer complexation boosts molecular conductance through Fermi level pinning. Chemical Science, 2019, 10, 2396-2403.	3.7	47
74	Interaction of Chromium with Resistant Strain Aspergillus versicolor: Investigation with Atomic Force Microscopy and Other Physical Studies. Langmuir, 2008, 24, 8643-8650.	1.6	46
75	Electrochemical, spectroscopic and SPM evidence for the controlled formation of self-assembled monolayers and organised multilayers of ferrocenyl alkyl thiols on Au(111). Physical Chemistry Chemical Physics, 2001, 3, 3411-3419.	1.3	45
76	Wiring nanoparticles with redox molecules. Faraday Discussions, 2004, 125, 179-194.	1.6	45
77	Graphene as a Promising Electrode for Low-Current Attenuation in Nonsymmetric Molecular Junctions. Nano Letters, 2016, 16, 6534-6540.	4.5	44
78	An in situ scanning tunneling microscopy study of the initial stages of bulk copper deposition on gold (100): the rim effect. Langmuir, 1992, 8, 2572-2576.	1.6	43
79	Anomalous length and voltage dependence of single molecule conductance. Physical Chemistry Chemical Physics, 2009, 11, 10831.	1.3	43
80	In Situ Surface-Enhanced Infrared Spectroscopy to Identify Oxygen Reduction Products in Nonaqueous Metal–Oxygen Batteries. Journal of Physical Chemistry C, 2017, 121, 19657-19667.	1.5	42
81	Role of axially coordinated surface sites for electrochemically controlled carbon monoxide adsorption on single crystal copper electrodes. Physical Chemistry Chemical Physics, 2011, 13, 5242.	1.3	41
82	Gating of single molecule junction conductance by charge transfer complex formation. Nanoscale, 2015, 7, 18949-18955.	2.8	41
83	Metal/molecule/metal junction studies of organometallic and coordination complexes; What can transition metals do for molecular electronics?. Polyhedron, 2018, 140, 25-34.	1.0	41
84	Structure and Dynamics of Tetramethylthiourea Adsorption on Au(111) Studied by in Situ Scanning Tunneling Microscopy. Langmuir, 1996, 12, 3060-3066.	1.6	40
85	Surface functionalization of Aspergillus versicolor mycelia: in situ fabrication of cadmium sulphide nanoparticles and removal of cadmium ions from aqueous solution. RSC Advances, 2012, 2, 3000.	1.7	40
86	Unusual Length Dependence of the Conductance in Cumulene Molecular Wires. Angewandte Chemie - International Edition, 2019, 58, 8378-8382.	7.2	39
87	Substrate Structural Effects on the Synthesis and Electrochemical Properties of Platinum Nanoparticles on Highly Oriented Pyrolytic Graphite. Journal of Physical Chemistry C, 2010, 114, 18439-18448.	1.5	38
88	Detecting Mechanochemical Atropisomerization within an STM Break Junction. Journal of the American Chemical Society, 2018, 140, 710-718.	6.6	38
89	Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces. Chemical Physics, 2005, 319, 210-221.	0.9	37
90	Adverse effects of asymmetric contacts on single molecule conductances of HS(CH2)nCOOH in nanoelectrical junctions. Nanotechnology, 2009, 20, 125203.	1.3	37

#	Article	IF	Citations
91	Synthesis, Electrochemistry, and Single-Molecule Conductance of Bimetallic 2,3,5,6-Tetra(pyridine-2-yl)pyrazine-Based Complexes. Inorganic Chemistry, 2015, 54, 5487-5494.	1.9	37
92	Towards molecular electronic devices based on â€~all-carbon' wires. Nanoscale, 2018, 10, 14128-14138.	2.8	37
93	Classification of growth behaviour for copper on various substrates with in-situ scanning probe microscopy. Surface Science, 1995, 335, 110-119.	0.8	36
94	In situ monitoring of intrinsic stress changes during copper electrodeposition on Au(111). Surface Science, 1997, 388, 141-149.	0.8	36
95	Surface termination and hydrogen bubble adhesion on Si(100) surfaces during anisotropic dissolution in aqueous KOH. Journal of Electroanalytical Chemistry, 2006, 597, 1-12.	1.9	36
96	Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films. Journal of Materials Chemistry C, 2014, 2, 7348-7355.	2.7	36
97	Folding a Single-Molecule Junction. Nano Letters, 2020, 20, 7980-7986.	4.5	35
98	Molecular Structure–(Thermo)electric Property Relationships in Single-Molecule Junctions and Comparisons with Single- and Multiple-Parameter Models. Journal of the American Chemical Society, 2021, 143, 3817-3829.	6.6	35
99	Electrosynthesis and characterization of biotin-functionalized poly(terthiophene) copolymers, and their response to avidin. Journal of Materials Chemistry, 2005, 15, 1186.	6.7	34
100	A combined top-down bottom-up approach for introducing nanoparticle networks into nanoelectrode gaps. Nanotechnology, 2006, 17, 3333-3339.	1.3	34
101	Metal–Molecule–Metal Junctions in Langmuir–Blodgett Films Using a New Linker: Trimethylsilane. Chemistry - A European Journal, 2010, 16, 13398-13405.	1.7	33
102	Unconventional Single-Molecule Conductance Behavior for a New Heterocyclic Anchoring Group: Pyrazolyl. Journal of Physical Chemistry Letters, 2018, 9, 5364-5372.	2.1	33
103	Site-specific interactions of copper(II) ions with heparin revealed with complementary (SRCD, NMR,) Tj ETQq1 1 0).784314 r 1.1	rgBT /Overlo
104	Single-Molecule Photocurrent at a Metal–Molecule–Semiconductor Junction. Nano Letters, 2017, 17, 6702-6707.	4.5	32
105	Copper underpotential deposition at high index single crystal surfaces of Au. Journal of Electroanalytical Chemistry, 2004, 570, 157-161.	1.9	31
106	Giant Single-Molecule Anisotropic Magnetoresistance at Room Temperature. Journal of the American Chemical Society, 2015, 137, 5923-5929.	6.6	31
107	Facile synthesis, biofilm disruption properties and biocompatibility study of a poly-cationic peptide functionalized graphene–silver nanocomposite. Biomaterials Science, 2018, 6, 3356-3372.	2.6	31
108	Chemical control of double barrier tunnelling in \hat{l}_{\pm} , l	2,2	30

#	Article	IF	CITATIONS
109	Single Gold Atom Containing Oligo(phenylene)ethynylene: Assembly into LB Films and Electrical Characterization. Journal of Physical Chemistry C, 2015, 119, 784-793.	1.5	30
110	Insulated molecular wires: inhibiting orthogonal contacts in metal complex based molecular junctions. Nanoscale, 2017, 9, 9902-9912.	2.8	30
111	Adsorption of Pyridine on Au(110) as Measured by Reflection Anisotropy Spectroscopy. Journal of the Electrochemical Society, 2003, 150, E233.	1.3	29
112	Directionally Oriented LB Films of an OPE Derivative: Assembly, Characterization, and Electrical Properties. Langmuir, 2011, 27, 3600-3610.	1.6	29
113	Resonant transport and electrostatic effects in single-molecule electrical junctions. Physical Review B, 2015, 91, .	1.1	28
114	Single-Molecule Transport at a Rectifying GaAs Contact. Nano Letters, 2017, 17, 1109-1115.	4. 5	28
115	Adsorbate-Induced Etching of Au(111) Surfaces:Â A Combined in-Situ Infrared Spectroscopy and Scanning Tunneling Microscopy Study. Langmuir, 1997, 13, 85-90.	1.6	26
116	Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics. Angewandte Chemie - International Edition, 2019, 58, 16583-16589.	7.2	26
117	Fullerene monolayers adsorbed on high index gold single crystal surfaces. Physical Chemistry Chemical Physics, 2004, 6, 619.	1.3	25
118	Fabrication, Characterization, and Electrical Properties of Langmuirâ^Blodgett Films of an Acid Terminated Phenyleneâ^Ethynylene Oligomer. Chemistry of Materials, 2010, 22, 2041-2049.	3.2	25
119	Gateway state-mediated, long-range tunnelling in molecular wires. Nanoscale, 2018, 10, 3060-3067.	2.8	25
120	Cross-conjugation increases the conductance of <i>meta</i> -connected fluorenones. Nanoscale, 2019, 11, 13720-13724.	2.8	25
121	Synthetic Control of Quantum Interference by Regulating Charge on a Single Atom in Heteroaromatic Molecular Junctions. Journal of Physical Chemistry Letters, 2019, 10, 6419-6424.	2.1	25
122	Redoxâ∈Addressable Singleâ∈Molecule Junctions Incorporating a Persistent Organic Radical**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
123	An electropainting method for coating STM tips for electrochemical measurements. Surface and Coatings Technology, 1994, 67, 139-144.	2.2	24
124	Metalloprotein adsorption on $Au(111)$ and polycrystalline platinum investigated by in situ scanning tunneling microscopy with molecular and submolecular resolution. Electrochimica Acta, 1998, 43, 2889-2897.	2.6	24
125	A molecular wire incorporating a robust hexanuclear platinum cluster. Physical Chemistry Chemical Physics, 2009, 11, 5198.	1.3	24
126	Evidence for a hopping mechanism in metal single molecule metaljunctions involving conjugated metalâ€"terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy) ₂] ²⁺ (M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-tionic liquid. Faraday Discussions, 2016, 193, 113-131.	terpyridine) in ²⁴

#	Article	IF	CITATIONS
127	Comment on "Monitoring the Transitions of the Charge-Induced Reconstruction of Au(110) by Reflection Anisotropy Spectroscopy― Physical Review Letters, 2004, 92, 199707.	2.9	23
128	<i>In situ</i> formation of H-bonding imidazole chains in break-junction experiments. Nanoscale, 2020, 12, 7914-7920.	2.8	23
129	Fullerene-linked Pt nanoparticle assemblies. Chemical Communications, 2004, , 1532.	2.2	22
130	Influence of Conformational Flexibility on Single-Molecule Conductance in Nano-Electrical Junctions. Journal of Physical Chemistry C, 2009, 113, 18884-18890.	1.5	22
131	Looking Ahead: Challenges and Opportunities in Organometallic Chemistryâ€. Organometallics, 2011, 30, 7-12.	1.1	22
132	Acetylene Used as a New Linker for Molecular Junctions in Phenylene–Ethynylene Oligomer Langmuir–Blodgett Films. Journal of Physical Chemistry C, 2012, 116, 9142-9150.	1.5	22
133	Effects of Electrode–Molecule Binding and Junction Geometry on the Single-Molecule Conductance of bis-2,2′:6′,2″-Terpyridine-based Complexes. Inorganic Chemistry, 2016, 55, 2691-2700.	1.9	22
134	Discrimination between hydrogen bonding and protonation in the spectra of a surface-enhanced Raman sensor. Physical Chemistry Chemical Physics, 2018, 20, 866-871.	1.3	22
135	From an Organometallic Monolayer to an Organic Monolayer Covered by Metal Nanoislands: A Simple Thermal Protocol for the Fabrication of the Top Contact Electrode in Molecular Electronic Devices. Advanced Materials Interfaces, 2014, 1, 1400128.	1.9	21
136	Single molecule vs. large area design of molecular electronic devices incorporating an efficient 2-aminepyridine double anchoring group. Nanoscale, 2019, 11, 15871-15880.	2.8	20
137	Selective Detection of Protein Secondary Structural Changes in Solution Proteinâ 'Polysaccharide Complexes Using Vibrational Circular Dichroism (VCD). Journal of the American Chemical Society, 2008, 130, 2138-2139.	6.6	19
138	lonic Liquid Based Approach for Single-Molecule Electronics with Cobalt Contacts. Langmuir, 2014, 30, 14329-14336.	1.6	19
139	A Peierls Transition in Long Polymethine Molecular Wires: Evolution of Molecular Geometry and Single-Molecule Conductance. Journal of the American Chemical Society, 2021, 143, 20472-20481.	6.6	19
140	A combined in situ infrared spectroscopy and scanning tunnelling microscopy study of ethyl xanthate adsorption on Au(111). Physical Chemistry Chemical Physics, 1999, 1, $3661-3666$.	1.3	18
141	Electrochemical reactivity in nanoscale domains: O2 reduction on a fullerene modified gold surface. Physical Chemistry Chemical Physics, 2005, 7, 1293.	1.3	18
142	Synthesis and characterization of monomeric and polymeric Pd(II) and Pt(II) complexes of 3,4-ethylenedioxythiophene-functionalized phosphine ligands. Journal of Materials Chemistry, 2009, 19, 1850.	6.7	18
143	Surface functionalization of electro-deposited nickel. Physical Chemistry Chemical Physics, 2011, 13, 17987.	1.3	18
144	Low variability of single-molecule conductance assisted by bulky metal–molecule contacts. RSC Advances, 2016, 6, 75111-75121.	1.7	18

#	Article	IF	CITATIONS
145	Electrical characterization of single molecule and Langmuir–Blodgett monomolecular films of a pyridine-terminated oligo(phenylene-ethynylene) derivative. Beilstein Journal of Nanotechnology, 2015, 6, 1145-1157.	1.5	17
146	An STM investigation of surface diffusion on iodine modified Au(111). Physical Chemistry Chemical Physics, 2000, 2, 1439-1444.	1.3	16
147	Biotechnological Potential of Soil Isolate, <i>Flavobacterium mizutaii < i > for Removal of Azo Dyes: Kinetics, Isotherm, and Microscopic Study. Separation Science and Technology, 2012, 47, 1913-1925.</i>	1.3	16
148	Controlling the Structural and Electrical Properties of Diacid Oligo(Phenylene Ethynylene) Langmuir–Blodgett Films. Chemistry - A European Journal, 2013, 19, 5352-5363.	1.7	16
149	Single molecule electrochemistry in nanoscale junctions. Current Opinion in Electrochemistry, 2017, 4, 98-104.	2.5	16
150	Conductance of †bare-bones' tripodal molecular wires. RSC Advances, 2018, 8, 23585-23590.	1.7	16
151	Electrically transmissive alkyne-anchored monolayers on gold. Nanoscale, 2019, 11, 7976-7985.	2.8	16
152	Graphene-Contacted Single Molecular Junctions with Conjugated Molecular Wires. ACS Applied Nano Materials, 2019, 2, 12-18.	2.4	16
153	An FTIR study of the surface chemistry of the dynamic Si(100) surface during etching in alkaline solution. Faraday Discussions, 2002, 121, 167-180.	1.6	15
154	lonic Liquids As a Medium for STM-Based Single Molecule Conductance Determination: An Exploration Employing Alkanedithiols. Journal of Physical Chemistry C, 2011, 115, 21402-21408.	1.5	15
155	Polycation Induced Potential Dependent Structural Transitions of Oligonucleotide Monolayers on Au(111)-Surfaces. Journal of the American Chemical Society, 2012, 134, 19092-19098.	6.6	15
156	Symmetry Effects on Attenuation Factors in Graphene-Based Molecular Junctions. Journal of Physical Chemistry Letters, 2017, 8, 5987-5992.	2.1	15
157	Electrochemistry and in situscanning tunnelling microscopy of pure and redox-marked DNA- and UNA-based oligonucleotides on Au(111)-electrode surfaces. Physical Chemistry Chemical Physics, 2013, 15, 776-786.	1.3	14
158	Conductance Behavior of Tetraphenyl-Aza-BODIPYs. Journal of Physical Chemistry C, 2020, 124, 6479-6485.	1.5	14
159	Molecular Dynamics and Electrochemical Investigations of a pH-Responsive Peptide Monolayer. Journal of Physical Chemistry C, 2009, $113,6792-6799$.	1.5	13
160	Towards the Fabrication of the Topâ€Contact Electrode in Molecular Junctions by Photoreduction of a Metal Precursor. Chemistry - A European Journal, 2014, 20, 3421-3426.	1.7	13
161	Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations. Journal of Materials Chemistry C, 2016, 4, 9036-9043.	2.7	13
162	Influence of surface coverage on the formation of 4,4′-bipyridinium (viologen) single molecular junctions. Journal of Materials Chemistry C, 2017, 5, 11717-11723.	2.7	13

#	Article	IF	Citations
163	Towards the design of effective multipodal contacts for use in the construction of Langmuir–Blodgett films and molecular junctions. Journal of Materials Chemistry C, 2020, 8, 672-682.	2.7	13
164	A Chemically Soldered Polyoxometalate Singleâ€Molecule Transistor. Angewandte Chemie, 2020, 132, 12127-12132.	1.6	13
165	The Application of Scanning Tunneling Microscopy to Electrochemistry. , 1992, , 275-292.		12
166	Time Domain Impedance Spectroscopy for Probing the Termination of Silicon (100) Surfaces in Aqueous KOH. Journal of Physical Chemistry B, 2001, 105, 12508-12515.	1,2	12
167	Structural and Nanomechanical Properties of Termitomyces clypeatus Cell Wall and Its Interaction with Chromium(VI). Journal of Physical Chemistry B, 2009, 113, 1485-1492.	1.2	12
168	Sideâ€Groupâ€Mediated Mechanical Conductance Switching in Molecular Junctions. Angewandte Chemie, 2017, 129, 15580-15584.	1.6	12
169	pH control of conductance in a pyrazolyl Langmuir–Blodgett monolayer. Journal of Materials Chemistry C, 2021, 9, 2882-2889.	2.7	12
170	2,7- and 4,9-Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties, and Charge Transport in Single-Molecule Junctions. Journal of the American Chemical Society, 2022, 144, 12698-12714.	6.6	12
171	Electrochemically grafted single molecule junctions exploiting a chemical protection strategy. Electrochimica Acta, 2016, 220, 436-443.	2.6	11
172	Charge transport at a molecular GaAs nanoscale junction. Faraday Discussions, 2018, 210, 397-408.	1.6	11
173	Unusual Length Dependence of the Conductance in Cumulene Molecular Wires. Angewandte Chemie, 2019, 131, 8466-8470.	1.6	11
174	Effect of Asymmetric Anchoring Groups on Electronic Transport in Hybrid Metal/Molecule/Graphene Single Molecule Junctions. ChemPhysChem, 2019, 20, 1830-1836.	1.0	10
175	HS(CH ₂) ₄ O(CH ₂) ₄ SH and HS(CH ₂) ₂) _{>2}) _{>3}) ₂) _{2<td>0.7</td><td>9</td>}	0.7	9
176	Single-molecule contacts exposed. Nature Materials, 2015, 14, 465-466.	13.3	9
177	Carbon-contacted single molecule electrical junctions. Physical Chemistry Chemical Physics, 2018, 20, 24553-24560.	1.3	9
178	Detection of Metal–Molecule–Metal Junction Formation by Surface Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 2644-2651.	3.2	9
179	Molecular electronics at electrode–electrolyte interfaces. Current Opinion in Electrochemistry, 2021, 25, 100650.	2.5	9
180	Technical Effects of Molecule–Electrode Contacts in Graphene-Based Molecular Junctions. Journal of Physical Chemistry C, 2018, 122, 23200-23207.	1.5	8

#	Article	IF	CITATIONS
181	Long-lived charged states of single porphyrin-tape junctions under ambient conditions. Nanoscale Horizons, 2021, 6, 49-58.	4.1	8
182	Selective Anchoring Groups for Molecular Electronic Junctions with ITO Electrodes. ACS Sensors, 2021, 6, 530-537.	4.0	8
183	A [Ni(cyclam)]2+-functionalised poly(3,4-ethylenedioxythiophene): Synthesis, electropolymerisation and characterisation of the polymer by cyclic voltammetry and in situ reflectance FTIR spectroscopy. Inorganica Chimica Acta, 2006, 359, 3491-3496.	1.2	7
184	Effect of Molecular Structure on Electrochemical Phase Behavior of Phospholipid Bilayers on Au(111). Langmuir, 2021, 37, 11887-11899.	1.6	7
185	Soft versus hard junction formation for $\hat{l}\pm$ -terthiophene molecular wires and their charge transfer complexes. Journal of Chemical Physics, 2017, 146, .	1.2	6
186	Fast and straightforward analysis approach of charge transport data in single molecule junctions. Nanotechnology, 2018, 29, 325701.	1.3	6
187	Charge transport in hybrid platinum/molecule/graphene single molecule junctions. Physical Chemistry Chemical Physics, 2020, 22, 13498-13504.	1.3	6
188	A gravimetric analysis of protein–oligosaccharide interactions. Biochemical Society Transactions, 2003, 31, 349-351.	1.6	5
189	Catalysts under the microscope. Nature Nanotechnology, 2007, 2, 270-271.	15.6	5
190	NO adsorption on Pt (111)/Bi surfaces. Electrochemistry Communications, 2013, 34, 37-40.	2.3	5
191	A quantitative determination of lipid bilayer deposition efficiency using AFM. RSC Advances, 2021, 11, 19768-19778.	1.7	5
192	Electrochemical gating for single-molecule electronics with hybrid Au graphene contacts. Physical Chemistry Chemical Physics, 2022, 24, 6836-6844.	1.3	4
193	A reflectance anisotropy spectroscopy study of underpotential deposition of copper onto Au(110). Physica Status Solidi (B): Basic Research, 2005, 242, 2595-2600.	0.7	3
194	First- and second-order phase transitions in the adlayer of biadipate on $Au(111)$. Physical Chemistry Chemical Physics, 2009, 11, 688-693.	1.3	3
195	Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics. Angewandte Chemie, 2019, 131, 16736-16742.	1.6	3
196	Asymmetric Effect on the Length Dependence of Oligo(Phenylene ethynylene)-Based Molecular Junctions. Journal of Physical Chemistry C, 2022, 126, 3635-3645.	1.5	3
197	STM studies of electron transfer through single molecules at electrode-electrolyte interfaces. Electrochimica Acta, 2021, 387, 138497.	2.6	2
198	Molecular Electronic Devices: From an Organometallic Monolayer to an Organic Monolayer Covered by Metal Nanoislands: A Simple Thermal Protocol for the Fabrication of the Top Contact Electrode in Molecular Electronic Devices (Adv. Mater. Interfaces 9/2014). Advanced Materials Interfaces, 2014, 1, .	1.9	1

#	ARTICLE	IF	CITATIONS
199	Redox-Connected Multilayers of Discrete Gold Particles: A Novel Electroactive Nanomaterial. , 1999, 11, 737.		1
200	The analysis of the fibroblast growth factor ligand-receptor complex using a quartz crystal microbalance-dissipation. International Journal of Experimental Pathology, 2004, 85, A72-A73.	0.6	0
201	Environmental Effects on the Single Molecule Conductance of bis(thiahexyl)oligothiophenes. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	0
202	Energy conversion at nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 333-351.	1.6	0
203	Innenrýcktitelbild: Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics (Angew. Chem. 46/2019). Angewandte Chemie, 2019, 131, 16851-16851.	1.6	0
204	The Electrical Properties of Porphyrin Single Molecule Wires. ECS Meeting Abstracts, 2018, , .	0.0	0
205	Charge Transport through Single Molecules Connected to Semiconductor Electrodes. ECS Meeting Abstracts, 2018, , .	0.0	0
206	Redoxâ€Addressable Singleâ€Molecule Junctions Incorporating a Persistent Organic Radical**. Angewandte Chemie, 0, , .	1.6	0