Ildiko Van Rhijn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3087915/publications.pdf

Version: 2024-02-01

		172207	182168
68	2,910	29	51
papers	citations	h-index	g-index
69	69	69	2643
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dual TCR-α Expression on Mucosal-Associated Invariant T Cells as a Potential Confounder of TCR Interpretation. Journal of Immunology, 2022, 208, 1389-1395.	0.4	2
2	Atypical sideways recognition of CD1a by autoreactive $\hat{I}^3\hat{I}'T$ cell receptors. Nature Communications, 2022, 13, .	5.8	12
3	Synthetic mycobacterial diacyl trehaloses reveal differential recognition by human T cell receptors and the C-type lectin Mincle. Scientific Reports, 2021, 11, 2010.	1.6	7
4	Human skin is colonized by T cells that recognize CD1a independently of lipid. Journal of Clinical Investigation, 2021, 131, .	3.9	31
5	CD1 and MR1 recognition by human γδT cells. Molecular Immunology, 2021, 133, 95-100.	1.0	4
6	Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nature Immunology, 2021, 22, 781-793.	7.0	52
7	CD1a selectively captures endogenous cellular lipids that broadly block T cell response. Journal of Experimental Medicine, 2021, 218, .	4.2	24
8	Benzofuran sulfonates and small self-lipid antigens activate type II NKT cells via CD1d. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
9	Rational design of a hydrolysis-resistant mycobacterial phosphoglycolipid antigen presented by CD1c to T cells. Journal of Biological Chemistry, 2021, 297, 101197.	1.6	5
10	Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products. Science Immunology, 2020, 5, .	5.6	42
11	Human Î ³ δT cells recognize CD1b by two distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22944-22952.	3.3	34
12	CD1b Tetramers Broadly Detect T Cells That Correlate With Mycobacterial Exposure but Not Tuberculosis Disease State. Frontiers in Immunology, 2020, 11, 199.	2.2	22
13	Total Synthesis of a Mycolic Acid from <i>Mycobacterium tuberculosis</i> International Edition, 2020, 59, 7555-7560.	7.2	14
14	Total Synthesis of a Mycolic Acid from Mycobacterium tuberculosis. Angewandte Chemie, 2020, 132, 7625-7630.	1.6	1
15	Peripheral Blood Mucosal-Associated Invariant T Cells in Tuberculosis Patients and Healthy Mycobacterium tuberculosis-Exposed Controls. Journal of Infectious Diseases, 2020, 222, 995-1007.	1.9	19
16	Asymmetric Total Synthesis of Mycobacterial Diacyl Trehaloses Demonstrates a Role for Lipid Structure in Immunogenicity. ACS Chemical Biology, 2020, 15, 1835-1841.	1.6	10
17	RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. Scientific Reports, 2020, 10, 8629.	1.6	90
18	Total Synthesis of an Immunogenic Trehalose Phospholipid from <i>Salmonella</i> Typhi and Elucidation of Its <i>sn</i> -Regiochemistry by Mass Spectrometry. Organic Letters, 2019, 21, 5126-5131.	2.4	7

#	Article	IF	CITATIONS
19	CD1b presents self and <i>Borrelia burgdorferi</i> diacylglycerols to human T cells. European Journal of Immunology, 2019, 49, 737-746.	1.6	10
20	Discovery of <i>Salmonella</i> trehalose phospholipids reveals functional convergence with mycobacteria. Journal of Experimental Medicine, 2019, 216, 757-771.	4.2	20
21	A TCR β-Chain Motif Biases toward Recognition of Human CD1 Proteins. Journal of Immunology, 2019, 203, 3395-3406.	0.4	10
22	A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids. Nature Communications, 2019, 10, 56.	5.8	31
23	CD1b Tetramers Identify T Cells that Recognize Natural and Synthetic Diacylated Sulfoglycolipids from Mycobacterium tuberculosis. Cell Chemical Biology, 2018, 25, 392-402.e14.	2.5	23
24	Molecular recognition of microbial lipid-based antigens by T cells. Cellular and Molecular Life Sciences, 2018, 75, 1623-1639.	2.4	10
25	T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nature Immunology, 2018, 19, 397-406.	7. O	52
26	Total Synthesis of <i>Mycobacterium tuberculosis</i> Dideoxymycobactinâ€838 and Stereoisomers: Diverse CD1aâ€Restricted T Cells Display a Common Hierarchy of Lipopeptide Recognition. Chemistry - A European Journal, 2017, 23, 1694-1701.	1.7	13
27	A molecular basis of human T cell receptor autoreactivity toward self-phospholipids. Science Immunology, 2017, 2, .	5.6	39
28	CD1bâ€mycolic acid tetramers demonstrate Tâ€cell fine specificity for mycobacterial lipid tails. European Journal of Immunology, 2017, 47, 1525-1534.	1.6	49
29	CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. Journal of Clinical Investigation, 2017, 127, 2339-2352.	3.9	59
30	Mammalian CD1 and MR1 genes. Immunogenetics, 2016, 68, 515-523.	1.2	26
31	T cell receptor recognition of CD1b presenting a mycobacterial glycolipid. Nature Communications, 2016, 7, 13257.	5. 8	59
32	Human autoreactive T cells recognize CD1b and phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 380-385.	3.3	85
33	<scp>CD</scp> 1 and mycobacterial lipids activate human T cells. Immunological Reviews, 2015, 264, 138-153.	2.8	72
34	Lipid and small-molecule display by CD1 and MR1. Nature Reviews Immunology, 2015, 15, 643-654.	10.6	120
35	Donor Unrestricted T Cells: A Shared Human T Cell Response. Journal of Immunology, 2015, 195, 1927-1932.	0.4	77
36	Expression Patterns of Bovine CD1 In Vivo and Assessment of the Specificities of the Anti-Bovine CD1 Antibodies. PLoS ONE, 2015, 10, e0121923.	1.1	11

#	Article	IF	Citations
37	TCR Bias and Affinity Define Two Compartments of the CD1b–Glycolipid-Specific T Cell Repertoire. Journal of Immunology, 2014, 192, 4054-4060.	0.4	64
38	Discovery of Invariant T Cells by Next-Generation Sequencing of the Human TCR α-Chain Repertoire. Journal of Immunology, 2014, 193, 5338-5344.	0.4	23
39	CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nature Immunology, 2014, 15, 177-185.	7.0	141
40	Targeted Delivery of Mycobacterial Antigens to Human Dendritic Cells via Siglec-7 Induces Robust T Cell Activation. Journal of Immunology, 2014, 193, 1560-1566.	0.4	54
41	Cutting Edge: CD1a Tetramers and Dextramers Identify Human Lipopeptide–Specific T Cells Ex Vivo. Journal of Immunology, 2013, 191, 4499-4503.	0.4	70
42	Lipoproteins Are Major Targets of the Polyclonal Human T Cell Response to <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2013, 190, 278-284.	0.4	22
43	CD1a, CD1b, and CD1c in Immunity Against Mycobacteria. Advances in Experimental Medicine and Biology, 2013, 783, 181-197.	0.8	46
44	A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nature Immunology, 2013, 14, 706-713.	7.0	187
45	The molecular basis for Mucosal-Associated Invariant T cell recognition of MR1 proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1771-8.	3.3	85
46	The bovine CD1D gene has an unusual gene structure and is expressed but cannot present \hat{l}_{\pm} -galactosylceramide with a C26 fatty acid. International Immunology, 2013, 25, 91-98.	1.8	16
47	γδT Cell Homing to Skin and Migration to Skin-Draining Lymph Nodes Is CCR7 Independent. Journal of Immunology, 2012, 188, 578-584.	0.4	38
48	CD1b tetramers bind $\hat{l}\pm\hat{l}^2$ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. Journal of Experimental Medicine, 2011, 208, 1741-1747.	4.2	132
49	Immune response of cattle immunized with a conjugate of the glycolipid glucose monomycolate and protein. Veterinary Immunology and Immunopathology, 2011, 142, 265-270.	0.5	5
50	CD1a-autoreactive T cells are a normal component of the human $\hat{l}\pm\hat{l}^2$ T cell repertoire. Nature Immunology, 2010, 11, 1102-1109.	7.0	221
51	Crystal Structure of Bovine CD1b3 with Endogenously Bound Ligands. Journal of Immunology, 2010, 185, 376-386.	0.4	15
52	Lion (Panthera leo) and cheetah (Acinonyx jubatus) IFN- \hat{l}^3 sequences. Veterinary Immunology and Immunopathology, 2010, 134, 296-298.	0.5	7
53	Conservation of mucosal associated invariant T (MAIT) cells and the MR1 restriction element in ruminants, and abundance of MAIT cells in spleen. Veterinary Research, 2010, 41, 62.	1.1	45
54	CD1c bypasses lysosomes to present a lipopeptide antigen with 12 amino acids. Journal of Experimental Medicine, 2009, 206, 1409-1422.	4.2	47

#	Article	IF	CITATIONS
55	Low crossâ€reactivity of Tâ€cell responses against lipids from <i>Mycobacterium bovis</i> and <i>M. avium paratuberculosis</i> during natural infection. European Journal of Immunology, 2009, 39, 3031-3041.	1.6	29
56	The evolved functions of CD1 during infection. Current Opinion in Immunology, 2009, 21, 397-403.	2.4	43
57	The bovine T cell receptor alpha/delta locus contains over 400 V genes and encodes V genes without CDR2. Immunogenetics, 2009, 61, 541-549.	1.2	22
58	Functional CD1d and/or NKT cell invariant chain transcript in horse, pig, African elephant and guinea pig, but not in ruminants. Molecular Immunology, 2009, 46, 1424-1431.	1.0	51
59	Two canine CD1a proteins are differentially expressed in skin. Immunogenetics, 2008, 60, 315-324.	1.2	28
60	Bovine tuberculosis as a model for human tuberculosis: advantages over small animal models. Microbes and Infection, 2008, 10, 711-715.	1.0	59
61	Massive, sustained γδT cell migration from the bovine skin in vivo. Journal of Leukocyte Biology, 2007, 81, 968-973.	1.5	28
62	Highly diverse TCR \hat{l}' chain repertoire in bovine tissues due to the use of up to four D segments per \hat{l}' chain. Molecular Immunology, 2007, 44, 3155-3161.	1.0	21
63	Role of lipid trimming and CD1 groove size in cellular antigen presentation. EMBO Journal, 2006, 25, 2989-2999.	3.5	50
64	The Bovine CD1 Family Contains Group 1 CD1 Proteins, but No Functional CD1d. Journal of Immunology, 2006, 176, 4888-4893.	0.4	64
65	T-cell activation by lipopeptide antigens. Current Opinion in Immunology, 2005, 17, 222-229.	2.4	22
66	CD1d-restricted T cell activation by nonlipidic small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13578-13583.	3.3	91
67	Expansion of human gammadelta T cells after in vitro stimulation with Campylobacter jejuni. International Immunology, 2003, 15, 373-382.	1.8	18
68	CampylobacterDNA Is Present in Circulating Myelomonocytic Cells of Healthy Persons and in Persons with Guillainâ€Barré Syndrome. Journal of Infectious Diseases, 2002, 185, 262-265.	1.9	9