Suhyun Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3087880/publications.pdf Version: 2024-02-01

SUHVUN LEE

#	Article	IF	CITATIONS
1	Nanostructured self-cleaning lyocell fabrics with asymmetric wettability and moisture absorbency (part I). RSC Advances, 2014, 4, 45442-45448.	3.6	46
2	The effect of fabric movement on washing performance in a front-loading washer II: under various physical washing conditions. Textile Reseach Journal, 2015, 85, 251-261.	2.2	39
3	Preparation of breathable and superhydrophobic polyurethane electrospun webs with silica nanoparticles. Textile Reseach Journal, 2016, 86, 1816-1827.	2.2	38
4	Influence of micro and nano-scale roughness on hydrophobicity of a plasma-treated woven fabric. Textile Reseach Journal, 2017, 87, 193-207.	2.2	38
5	The effect of fabric movement on washing performance in a front-loading washer. Textile Reseach Journal, 2013, 83, 1786-1795.	2.2	35
6	Development of superhydrophobic polyester fabrics using alkaline hydrolysis and coating with fluorinated polymers. Fibers and Polymers, 2016, 17, 241-247.	2.1	33
7	A quantitative analysis on the surface roughness and the level of hydrophobicity for superhydrophobic ZnO nanorods grown textiles. Textile Reseach Journal, 2014, 84, 1776-1788.	2.2	29
8	The effects of the fabric properties on fabric movement and the prediction of the fabric movements in a front-loading washer. Textile Reseach Journal, 2013, 83, 1201-1212.	2.2	27
9	Analysis of the wetting state of super-repellent fabrics with liquids of varying surface tension. RSC Advances, 2016, 6, 45884-45893.	3.6	27
10	The effect of fabric movement on washing performance in a front-loading washer III: Focus on the optimized movement algorithm. Textile Reseach Journal, 2016, 86, 563-572.	2.2	23
11	Comparison of environmental and economic impacts caused by the washing machine operation of various regions. Energy Efficiency, 2015, 8, 905-918.	2.8	20
12	The effect of fabric movement on washing performance in a front-loading washer IV: under 3.25-kg laundry load condition. Textile Reseach Journal, 2017, 87, 1071-1080.	2.2	17
13	Washing efficiency and fabric damage by beating and rubbing movements in comparison with a front-loading washer. Textile Reseach Journal, 2017, 87, 708-714.	2.2	16
14	Nanostructured superhydrophobic lyocell fabrics with asymmetric moisture absorbency: Moisture managing properties. Textile Reseach Journal, 2017, 87, 807-815.	2.2	15
15	Mechanical and physicochemical contribution in removal of different soil types on cotton fabric. Textile Reseach Journal, 2015, 85, 2009-2019.	2.2	14
16	Conductivity, superhydrophobicity and mechanical properties of cotton fabric treated with polypyrrole by in-situ polymerization using the binary oxidants ammonium Peroxodisulfate and ferric chloride. Textile Reseach Journal, 2019, 89, 2376-2394.	2.2	14
17	Electrically conductive and superhydrophobic textiles via pyrrole polymerization and surface hydrophobization after alkaline hydrolysis. Textile Reseach Journal, 2019, 89, 1436-1447.	2.2	9
18	Fabric movement and washing performance in a front-loading washer with a built-in pulsator. Textile Reseach Journal, 2019, 89, 4732-4745.	2.2	8

Suhyun Lee

#	Article	IF	CITATIONS
19	Effect of Fabric Characteristics and Drum Rotation Speeds on the Movements and Drying Performances of Clothes in a Tumble Dryer. Fibers and Polymers, 2022, 23, 1741-1752.	2.1	4
20	Surface Wettability Prediction Using Image Analysis and an Artificial Neural Network. Langmuir, 2022, 38, 7208-7217.	3.5	4
21	Layer-by-layer coating of MIL-100(Fe) on a cotton fabric for purification of water-soluble dyes by the combined effect of adsorption and photocatalytic degradation. RSC Advances, 2022, 12, 17505-17513.	3.6	4
22	Analysis of electrical and comfort properties of conductive knitted fabrics based on blending ratio of silver-coated yarns for smart clothing. Journal of Engineered Fibers and Fabrics, 2022, 17, 155892502211044.	1.0	4
23	The effect of fabric movement on washing performance in a front-loading washer V: Focusing on the role and shape of the lifter. Textile Reseach Journal, 2019, 89, 364-374.	2.2	3
24	Development of superhydrophobic textiles via polyvinylidene fluoride phase separation in one-step process. Textile Reseach Journal, 2019, 89, 2595-2603.	2.2	1
25	Study of superhydrophobicity according to surface structure of knitted fabrics. Textile Reseach Journal, 0, , 004051752211042.	2.2	1
26	Dynamic behaviors of water droplets on superhydrophobic polyester films and woven and knitted fabrics. Textile Reseach Journal, 0, , 004051752211026.	2.2	1
27	Improvement in drying performance through sample movement change in tumble dryers. Textile Reseach Journal, 2022, 92, 4814-4833.	2.2	1