
Lars Stoumann Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3087740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scenario analysis using the Daisy model to assess and mitigate nitrate leaching from complex agro-environmental settings in Denmark. Science of the Total Environment, 2022, 816, 151518.	3.9	2
2	Selection and application of agri-environmental indicators to assess potential technologies for nutrient recovery in agriculture. Ecological Indicators, 2022, 134, 108471.	2.6	9
3	Succession of the wheat seed-associated microbiome as affected by soil fertility level and introduction of <i>Penicillium</i> and <i>Bacillus</i> inoculants in the field. FEMS Microbiology Ecology, 2022, 98, .	1.3	5
4	Can silicon in glacial rock flour enhance phosphorus availability in acidic tropical soil?. Plant and Soil, 2022, 477, 241-258.	1.8	4
5	Nutrient interactions and salinity effects on plant uptake of phosphorus from waste-based fertilisers. Geoderma, 2022, 422, 115939.	2.3	2
6	Adequacy of nitrogen-based indicators for assessment of cropping system performance: A modelling study of Danish scenarios. Science of the Total Environment, 2022, 842, 156927.	3.9	4
7	Effect of natural and regulatory conditions on the environmental impacts of pig slurry acidification across different regions in Europe: A life cycle assessment. Journal of Cleaner Production, 2022, 368, 133072.	4.6	5
8	Phosphateâ€solubilising microorganisms for improved crop productivity: a critical assessment. New Phytologist, 2021, 229, 1268-1277.	3.5	98
9	Inactivation of <i>Cryptosporidium parvum</i> oocysts and faecal indicator bacteria in cattle slurry by addition of ammonia. Journal of Applied Microbiology, 2021, 130, 1745-1757.	1.4	3
10	Chemical properties of agro-waste compost affect greenhouse gas emission from soils through changed C and N mineralisation. Biology and Fertility of Soils, 2021, 57, 781-792.	2.3	13
11	Towards integrated cover crop management: N, P and S release from aboveground and belowground residues. Agriculture, Ecosystems and Environment, 2021, 313, 107392.	2.5	18
12	Comparison of Alum and Sulfuric Acid to Retain and Increase the Ammonium Content of Digestate Solids during Thermal Drying. Nitrogen, 2021, 2, 287-297.	0.6	3
13	Dataset of biomass and chemical quality of crop residues from European areas. Data in Brief, 2021, 37, 107227.	0.5	6
14	Longâ€ŧerm effect of tillage and straw retention in conservation agriculture systems on soil carbon storage. Soil Science Society of America Journal, 2021, 85, 1465-1478.	1.2	13
15	Seed inoculation with Penicillium bilaiae and Bacillus simplex affects the nutrient status of winter wheat. Biology and Fertility of Soils, 2020, 56, 97-109.	2.3	26
16	Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agricultural Systems, 2020, 177, 102689.	3.2	102
17	Acidified Animal Manure Products Combined with a Nitrification Inhibitor Can Serve as a Starter Fertilizer for Maize. Agronomy, 2020, 10, 1941.	1.3	12
18	Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertiliser application strategies. Science of the Total Environment, 2020, 739, 140215.	3.9	49

#	Article	IF	CITATIONS
19	Reducing greenhouse gas emissions and grain arsenic and lead levels without compromising yield in organically produced rice. Agriculture, Ecosystems and Environment, 2020, 295, 106922.	2.5	16
20	Three different Fourierâ€ŧransform midâ€infrared sampling techniques to characterize bioâ€organic samples. Journal of Environmental Quality, 2020, 49, 1310-1321.	1.0	6
21	DNMARK: Danish Nitrogen Mitigation Assessment: Research and Know-how for a Sustainable, Low-Nitrogen Food Production. , 2020, , 363-376.		1
22	Phosphorus availability of sewage sludges and ashes in soils of contrasting pH. Journal of Plant Nutrition and Soil Science, 2020, 183, 682-694.	1.1	12
23	Long-term fertilisation strategies and form affect nutrient budgets and soil test values, soil carbon retention and crop yield resilience. Plant and Soil, 2019, 434, 47-64.	1.8	23
24	Glacially abraded rock flour from Greenland: Potential for macronutrient supply to plants. Journal of Plant Nutrition and Soil Science, 2019, 182, 846-856.	1.1	8
25	Increased retention of available nitrogen during thermal drying of solids of digested sewage sludge and manure by acid and zeolite addition. Waste Management, 2019, 100, 306-317.	3.7	17
26	Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus. Geoderma, 2019, 355, 113909.	2.3	37
27	Estimating nitrogen release from Brassicacatch crop residues—Comparison of different approaches within the APSIM model. Soil and Tillage Research, 2019, 195, 104358.	2.6	11
28	Life cycle assessment of garden waste management options including long-term emissions after land application. Waste Management, 2019, 86, 54-66.	3.7	24
29	Biotic strategies to increase plant availability of sewage sludge ash phosphorus. Journal of Plant Nutrition and Soil Science, 2019, 182, 175-186.	1.1	6
30	Recovery of nutrients from the liquid fraction of digestate: Use of enriched zeolite and biochar as nitrogen fertilizers. Journal of Plant Nutrition and Soil Science, 2019, 182, 187-195.	1.1	22
31	Residual phosphorus availability after long-term soil application of organic waste. Agriculture, Ecosystems and Environment, 2019, 270-271, 65-75.	2.5	51
32	Fertilising effect of sewage sludge ash inoculated with the phosphate-solubilising fungus Penicillium bilaiae under semi-field conditions. Biology and Fertility of Soils, 2019, 55, 43-51.	2.3	10
33	Nitrogen and phosphorus release from organic wastes and suitability as bio-based fertilizers in a circular economy. Environmental Technology (United Kingdom), 2019, 40, 701-715.	1.2	12
34	Deriving Environmental Life Cycle Inventory Factors for Land Application of Garden Waste Products Under Northern European Conditions. Environmental Modeling and Assessment, 2019, 24, 21-35.	1.2	6
35	Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field. Soil Biology and Biochemistry, 2018, 122, 91-103.	4.2	134
36	Stakeholder perceptions of manure treatment technologies in Denmark, Italy, the Netherlands and Spain. Journal of Cleaner Production, 2018, 172, 1620-1630.	4.6	61

#	Article	IF	CITATIONS
37	Bamboo biochar does not affect paddy soil N ₂ O emissions or source following slurry or mineral fertilizer amendment—a ¹⁵ N tracer study. Journal of Plant Nutrition and Soil Science, 2018, 181, 90-98.	1.1	22
38	Life cycle assessment of sewage sludge management options including long-term impacts after land application. Journal of Cleaner Production, 2018, 174, 538-547.	4.6	92
39	The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Science of the Total Environment, 2018, 612, 1329-1339.	3.9	74
40	Low-P solution culture can be used for screening root growth vigor in soil for high nutrient uptake of spring wheat varieties. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2018, 68, 130-138.	0.3	2
41	Life cycle inventory modeling of phosphorus substitution, losses and crop uptake after land application of organic waste products. International Journal of Life Cycle Assessment, 2018, 23, 1950-1965.	2.2	12
42	Co-design and assessment of mitigation practices in rice production systems: A case study in northern Vietnam. Agricultural Systems, 2018, 167, 72-82.	3.2	11
43	Use of Penicillium bilaiae to improve phosphorus bioavailability of thermally treated sewage sludge – A potential novel type biofertiliser. Process Biochemistry, 2018, 69, 169-177.	1.8	13
44	Comparing Environmental Impacts from Insects for Feed and Food as an Alternative to Animal Production. , 2018, , 163-180.		7
45	Enhancing the phosphorus bioavailability of thermally converted sewage sludge by phosphate-solubilising fungi. Ecological Engineering, 2018, 120, 44-53.	1.6	13
46	Survival and phosphate solubilisation activity of desiccated formulations of Penicillium bilaiae and Aspergillus niger influenced by water activity. Journal of Microbiological Methods, 2018, 150, 39-46.	0.7	2
47	Seed treatment with <i>Penicillium</i> sp. or Mn/Zn can alleviate the negative effects of cold stress in maize grown in soils dependent on soil fertility. Journal of Agronomy and Crop Science, 2018, 204, 603-612.	1.7	16
48	Effects of Penicillium bilaii on maize growth are mediated by available phosphorus. Plant and Soil, 2018, 431, 159-173.	1.8	21
49	Paddy soil drainage influences residue carbon contribution to methane emissions. Journal of Environmental Management, 2018, 225, 168-176.	3.8	9
50	The Role of Soil Organic Matter for Maintaining Crop Yields: Evidence for a Renewed Conceptual Basis. Advances in Agronomy, 2018, 150, 35-79.	2.4	68
51	Nitrogen turnover, crop use efficiency and soil fertility in a long-term field experiment amended with different qualities of urban and agricultural waste. Agriculture, Ecosystems and Environment, 2017, 240, 300-313.	2.5	41
52	Long-term P and K fertilisation strategies and balances affect soil availability indices, crop yield depression risk and N use. European Journal of Agronomy, 2017, 86, 12-23.	1.9	45
53	Nutrient Recovery From the Liquid Fraction of Digestate by Clinoptilolite. Clean - Soil, Air, Water, 2017, 45, 1500153.	0.7	27
54	The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere, 2017, 169, 377-386.	4.2	80

#	Article	IF	CITATIONS
55	Farmer perceptions and use of organic waste products as fertilisers – A survey study of potential benefits and barriers. Agricultural Systems, 2017, 151, 84-95.	3.2	107
56	Nutrient uptake efficiency in ryegrass fertilized with dried digestate solids as affected by acidification and drying temperature. Plant and Soil, 2017, 421, 401-416.	1.8	9
57	Mitigating CH 4 and N 2 O emissions from intensive rice production systems in northern Vietnam: Efficiency of drainage patterns in combination with rice residue incorporation. Agriculture, Ecosystems and Environment, 2017, 249, 101-111.	2.5	55
58	Biogas Digester Hydraulic Retention Time Affects Oxygen Consumption Patterns and Greenhouse Gas Emissions after Application of Digestate to Soil. Journal of Environmental Quality, 2017, 46, 1114-1122.	1.0	7
59	Effects of cattle slurry and nitrification inhibitor application on spatial soil O2 dynamics and N2O production pathways. Soil Biology and Biochemistry, 2017, 114, 200-209.	4.2	42
60	Nitrogen mineralisation and greenhouse gas emission from the soil application of sludge from reed bed mineralisation systems. Journal of Environmental Management, 2017, 203, 59-67.	3.8	7
61	Plant availability of phosphorus from dewatered sewage sludge, untreated incineration ashes, and other products recovered from a wastewater treatment system. Journal of Plant Nutrition and Soil Science, 2017, 180, 779-787.	1.1	33
62	Effects of thermal drying on phosphorus availability from ironâ€precipitated sewage sludge. Journal of Plant Nutrition and Soil Science, 2017, 180, 720-728.	1.1	13
63	The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study. Journal of Environmental Management, 2017, 186, 88-95.	3.8	55
64	Repeated application of organic waste affects soil organic matter composition: Evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers. Soil Biology and Biochemistry, 2017, 104, 117-127.	4.2	67
65	Does the combination of biochar and clinoptilolite enhance nutrient recovery from the liquid fraction of biogas digestate?. Environmental Technology (United Kingdom), 2017, 38, 1313-1323.	1.2	22
66	Penicillium bilaii effects on maize growth and P uptake from soil and localized sewageÂsludge in a rhizobox experiment. Biology and Fertility of Soils, 2017, 53, 23-35.	2.3	22
67	Early drainage mitigates methane and nitrous oxide emissions from organically amended paddy soils. Geoderma, 2017, 304, 49-58.	2.3	25
68	Genotypic differences in growth, yield and nutrient accumulation of spring wheat cultivars in response to long-term soil fertility regimes. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2017, 67, 126-133.	0.3	1
69	Differential responses of root and root hair traits of spring wheat genotypes to phosphorus deficiency in solution culture. Plant, Soil and Environment, 2016, 62, 540-546.	1.0	18
70	Net and Gross Nitrogen Turnover in Soil Amended with Acidified and Differently Dried Solids from Biogas Digestate. Soil Science Society of America Journal, 2016, 80, 943-953.	1.2	7
71	Vigorous Root Growth Is a Better Indicator of Early Nutrient Uptake than Root Hair Traits in Spring Wheat Grown under Low Fertility. Frontiers in Plant Science, 2016, 7, 865.	1.7	56
72	Cultivar differences in spatial root distribution during early growth in soil, and its relation to nutrient uptake - a study of wheat, onion and lettuce. Plant and Soil, 2016, 408, 255-270.	1.8	16

#	Article	IF	CITATIONS
73	A life cycle perspective of slurry acidification strategies under different nitrogen regulations. Journal of Cleaner Production, 2016, 127, 591-599.	4.6	22
74	Estimation of long-term environmental inventory factors associated with land application of sewage sludge. Journal of Cleaner Production, 2016, 126, 440-450.	4.6	25
75	Opportunity costs for maize associated with localised application of sewage sludge derived fertilisers, as indicated by early root and phosphorus uptake responses. Plant and Soil, 2016, 406, 201-217.	1.8	19
76	Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes – A life cycle assessment. Journal of Environmental Management, 2016, 181, 710-720.	3.8	15
77	Nitrogen transformations in and <scp>N₂O</scp> emissions from soil amended with manure solids and nitrification inhibitor. European Journal of Soil Science, 2016, 67, 792-803.	1.8	13
78	Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 29-36.	2.0	117
79	Localized application of sewage sludge improved plant nitrogen and phosphorus uptake by rhizoboxâ€grown spring wheat. Journal of Plant Nutrition and Soil Science, 2016, 179, 689-695.	1.1	9
80	The effect of Penicillium bilaii on wheat growth and phosphorus uptake as affected by soil pH, soil P and application of sewage sludge. Chemical and Biological Technologies in Agriculture, 2016, 3, .	1.9	18
81	Factors explaining variability in rice yields in a rain-fed lowland rice ecosystem in Southern Cambodia. Njas - Wageningen Journal of Life Sciences, 2016, 78, 129-137.	7.9	9
82	Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions. Environmental Science and Pollution Research, 2016, 23, 14383-14392.	2.7	5
83	Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers. Science of the Total Environment, 2016, 554-555, 119-129.	3.9	27
84	Long-Term Emission Factors for Land Application of Treated Organic Municipal Waste. Environmental Modeling and Assessment, 2016, 21, 111-124.	1.2	34
85	Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions. Journal of Environmental Management, 2016, 168, 236-244.	3.8	22
86	Measuring Phosphorus Availability in Recently Fertilized Soils with the Diffusive Gradient in Thin Films (DGT) Method – Challenges and Opportunities. Communications in Soil Science and Plant Analysis, 2016, 47, 563-570.	0.6	10
87	The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: An incubation study. Geoderma, 2016, 269, 99-107.	2.3	122
88	Thermal drying of the solid fraction from biogas digestate: Effects of acidification, temperature and ventilation on nitrogen content. Waste Management, 2016, 48, 218-226.	3.7	30
89	Pig slurry acidification, separation technology and thermal conversion affect phosphorus availability in soil amended with the derived solid fractions, chars or ashes. Plant and Soil, 2016, 401, 93-107.	1.8	20
90	Phosphorus in Denmark: National and regional anthropogenic flows. Resources, Conservation and Recycling, 2015, 105, 311-324.	5.3	58

#	Article	IF	CITATIONS
91	Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam. Asian-Australasian Journal of Animal Sciences, 2015, 28, 716-729.	2.4	62
92	Manure, biogas digestate and crop residue management affects methane gas emissions from rice paddy fields on Vietnamese smallholder livestock farms. Nutrient Cycling in Agroecosystems, 2015, 103, 329-346.	1.1	27
93	Effects of rice straw, biochar and mineral fertiliser on methane (CH4) and nitrous oxide (N2O) emissions from rice (Oryza sativa L.) grown in a rain-fed lowland rice soil of Cambodia: a pot experiment. Paddy and Water Environment, 2015, 13, 465-475.	1.0	43
94	Greenhouse gas emissions from passive composting of manure and digestate with crop residues and biochar on small-scale livestock farms in Vietnam. Environmental Technology (United Kingdom), 2015, 36, 2924-2935.	1.2	36
95	Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage. Agriculture, Ecosystems and Environment, 2015, 211, 94-101.	2.5	42
96	Heterogeneity of O2 dynamics in soil amended with animal manure and implications for greenhouse gas emissions. Soil Biology and Biochemistry, 2015, 84, 96-106.	4.2	59
97	Determination of the Higher Heating Value of Pig Manure. Waste and Biomass Valorization, 2015, 6, 327-333.	1.8	1
98	Effects of sewage sludge stabilization on fertilizer value and greenhouse gas emissions after soil application. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 506-516.	0.3	12
99	FTIR–PAS: A powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products. Waste Management, 2015, 39, 45-56.	3.7	47
100	Do soil organic carbon levels affect potential yields and nitrogen use efficiency? An analysis of winter wheat and spring barley field trials. European Journal of Agronomy, 2015, 66, 62-73.	1.9	75
101	Animal Manure Separation Technologies Diminish the Environmental Burden of Steroid Hormones. Environmental Science and Technology Letters, 2015, 2, 133-137.	3.9	8
102	Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform mid-infrared photoacoustic spectroscopy. Bioresource Technology, 2015, 197, 475-481.	4.8	37
103	Spatial Oxygen Distribution and Nitrous Oxide Emissions from Soil after Manure Application: A Novel Approach Using Planar Optodes. Journal of Environmental Quality, 2014, 43, 1809-1812.	1.0	23
104	Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark. Environmental Research Letters, 2014, 9, 115002.	2.2	184
105	Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark. Journal of Environmental Management, 2014, 132, 60-70.	3.8	57
106	Small-scale household biogas digesters: An option for global warming mitigation or a potential climate bomb?. Renewable and Sustainable Energy Reviews, 2014, 33, 736-741.	8.2	107
107	Prediction of changes in important physical parameters during composting of separated animal slurry solid fractions. Environmental Technology (United Kingdom), 2014, 35, 220-231.	1.2	15
108	Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agriculture, Ecosystems and Environment, 2014, 196, 137-146.	2.5	157

#	Article	IF	CITATIONS
109	Composting of solids separated from anaerobically digested animal manure: Effect of different bulking agents and mixing ratios on emissions of greenhouse gases and ammonia. Biosystems Engineering, 2014, 124, 63-77.	1.9	55
110	Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy. Soil Biology and Biochemistry, 2014, 77, 41-50.	4.2	87
111	The different effects of applying fresh, composted or charred manure on soil N2O emissions. Soil Biology and Biochemistry, 2014, 74, 61-69.	4.2	27
112	Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment. Bioresource Technology, 2014, 169, 543-551.	4.8	79
113	Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere, 2014, 97, 16-25.	4.2	232
114	Influence of pig manure biochar mineral content on Cr(<scp>III</scp>) sorption capacity. Journal of Chemical Technology and Biotechnology, 2014, 89, 569-578.	1.6	28
115	The implications of phasing out conventional nutrient supply in organic agriculture: Denmark as a case. Organic Agriculture, 2013, 3, 41-55.	1.2	54
116	Alternate partial root-zone irrigation improves fertilizer-N use efficiency in tomatoes. Irrigation Science, 2013, 31, 589-598.	1.3	38
117	Methane (CH4) and nitrous oxide (N2O) emissions from the system of rice intensification (SRI) under a rain-fed lowland rice ecosystem in Cambodia. Nutrient Cycling in Agroecosystems, 2013, 97, 13-27.	1.1	41
118	The influence of the pig manure separation system on the energy production potentials. Bioresource Technology, 2013, 136, 502-508.	4.8	38
119	Turnover of Manure ¹⁵ Nâ€Labelled Ammonium during Composting and Soil Application as Affected by Lime and Superphosphate Addition. Soil Science Society of America Journal, 2013, 77, 190-201.	1.2	8
120	Phosphorus, copper and zinc in solid and liquid fractions from full-scale and laboratory-separated pig slurry. Environmental Technology (United Kingdom), 2012, 33, 2119-2131.	1.2	42
121	Effect of biogas technology on nutrient flows for small- and medium-scale pig farms in Vietnam. Nutrient Cycling in Agroecosystems, 2012, 94, 1-13.	1.1	25
122	Application rate and composting method affect the immediate and residual manure fertilizer value in a maize–rice–rice–maize cropping sequence on a degraded soil in northern Vietnam. Soil Science and Plant Nutrition, 2012, 58, 206-223.	0.8	10
123	Storage temperature affects distribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction. Water Research, 2012, 46, 3849-3858.	5.3	35
124	The System of Rice Intensification: Adapted practices, reported outcomes and their relevance in Cambodia. Agricultural Systems, 2012, 113, 16-27.	3.2	38
125	Differences in carbon and nitrogen stable isotope signatures amongst wild and released pheasant populations. European Journal of Wildlife Research, 2012, 58, 755-760.	0.7	6
126	Carbon, Nitrogen, and Phosphorus Distribution in Particle Size–Fractionated Separated Pig and Cattle Slurry. Journal of Environmental Quality, 2011, 40, 224-232.	1.0	47

#	Article	IF	CITATIONS
127	Nitrogen turnover and loss during storage of slurry and composting of solid manure under typical Vietnamese farming conditions. Journal of Agricultural Science, 2011, 149, 285-296.	0.6	17
128	Biochemical characteristics of solid fractions from animal slurry separation and their effects on C and N mineralisation in soil. Biology and Fertility of Soils, 2011, 47, 447-455.	2.3	34
129	Modelling diverse root density dynamics and deep nitrogen uptake—A simple approach. Plant and Soil, 2010, 326, 493-510.	1.8	67
130	Alternate partial root-zone irrigation induced dry/wet cycles of soils stimulate N mineralization and improve N nutrition in tomatoes. Plant and Soil, 2010, 337, 167-177.	1.8	58
131	Production of compact plants by overexpression of <i>AtSHI</i> in the ornamental <i>Kalanchoë</i> . Plant Biotechnology Journal, 2010, 8, 211-222.	4.1	44
132	Measuring and modeling continuous quality distributions of soil organic matter. Biogeosciences, 2010, 7, 27-41.	1.3	31
133	Phosphorus Distribution in Untreated and Composted Solid Fractions from Slurry Separation. Journal of Environmental Quality, 2010, 39, 393-401.	1.0	19
134	Assessing soil carbon lability by near infrared spectroscopy and NaOCl oxidation. Soil Biology and Biochemistry, 2009, 41, 2170-2177.	4.2	19
135	Validation of model calculation of ammonia deposition in the neighbourhood of a poultry farm using measured NH3 concentrations and N deposition. Atmospheric Environment, 2009, 43, 915-920.	1.9	49
136	Simulating nitrate retention in soils and the effect of catch crop use and rooting pattern under the climatic conditions of Northern Europe. Soil Use and Management, 2009, 25, 243-254.	2.6	19
137	Chemical and biochemical variation in animal manure solids separated using different commercial separation technologies. Bioresource Technology, 2009, 100, 3088-3096.	4.8	79
138	Injection methods to reduce ammonia emission from volatile liquid fertilisers applied to growing crops. Biosystems Engineering, 2008, 100, 235-244.	1.9	43
139	Distribution and controls on gross N mineralization-immobilization-turnover in soil subjected to zero tillage. European Journal of Soil Science, 2008, 59, 190-197.	1.8	13
140	In search of stable soil organic carbon fractions: a comparison of methods applied to soils labelled with14C for 40 days or 40 years. European Journal of Soil Science, 2008, 59, 247-256.	1.8	44
141	A simple model for assessing ammonia emission from ammoniacal fertilisers as affected by pH and injection into soil. Atmospheric Environment, 2008, 42, 4656-4664.	1.9	18
142	Estimating soil C loss potentials from the C to N ratio. Soil Biology and Biochemistry, 2008, 40, 849-852.	4.2	42
143	Microbial mineralization and assimilation of black carbon: Dependency on degree of thermal alteration. Organic Geochemistry, 2008, 39, 839-845.	0.9	142
144	Characteristics of Soil Carbon Buried for 3300 Years in a Bronze Age Burial Mound. Soil Science Society of America Journal, 2008, 72, 1292-1298.	1.2	17

#	Article	IF	CITATIONS
145	Carbon and N turnover in moist sandy soil following short exposure to a range of high soil temperature regimes. Soil Research, 2008, 46, 710.	0.6	12
146	Modelling C and N mineralization during decomposition of anaerobically digested and composted municipal solid waste. Waste Management and Research, 2007, 25, 170-176.	2.2	7
147	Letter: Closing the phosphorus loop from intensive livestock farms. Environmental Science & Technology, 2007, 41, 5166-5166.	4.6	0
148	Effects of longâ€ŧerm annual inputs of straw and organic manure on plant N uptake and soil N fluxes. Soil Use and Management, 2007, 23, 368-373.	2.6	30
149	A model simulation analysis of soil nitrate concentrations—Does soil organic matter pool structure or catch crop growth parameters matter most?. Ecological Modelling, 2007, 205, 209-220.	1.2	13
150	Modeling vertical movement of organic matter in a soil incubated for 41 years with 14C labeled straw. Soil Biology and Biochemistry, 2007, 39, 368-371.	4.2	27
151	Stepwise chemical digestion, near-infrared spectroscopy or total N measurement to take account of decomposability of plant C and N in a mechanistic model. Soil Biology and Biochemistry, 2007, 39, 3115-3126.	4.2	12
152	Properties of anaerobically digested and composted municipal solid waste assessed by linking soil mesofauna dynamics and nitrogen modelling. Biology and Fertility of Soils, 2007, 44, 59-68.	2.3	15
153	Ammonia volatilization from surface-applied livestock slurry as affected by slurry composition and slurry infiltration depth. Journal of Agricultural Science, 2006, 144, 229-235.	0.6	67
154	Prediction of Gross and Net Nitrogen Mineralization-Immobilization-Turnover from Respiration. Soil Science Society of America Journal, 2006, 70, 1121-1128.	1.2	72
155	CHARACTERISATION OF PLANT RESIDUE QUALITY FOR PREDICTION OF DECOMPOSITION AND NITROGEN RELEASE IN AGRICULTURAL SOILS. Acta Horticulturae, 2006, , 57-62.	0.1	1
156	Application of processed organic municipal solid waste on agricultural land – a scenario analysis. Environmental Modeling and Assessment, 2006, 11, 251-265.	1.2	101
157	Catch crops affect nitrogen dynamics in organic farming systems without livestock husbandry—Simulations with the DAISY model. Ecological Modelling, 2006, 191, 538-544.	1.2	18
158	A nitrogen mineralization model based on relationships for gross mineralization and immobilization. Soil Biology and Biochemistry, 2006, 38, 2712-2721.	4.2	39
159	Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (Easewaste). Waste Management and Research, 2006, 24, 153-166.	2.2	103
160	Potent 4-Aryl- or 4-Arylalkyl-Substituted 3-Isoxazolol GABAAAntagonists:Â Synthesis, Pharmacology, and Molecular Modeling. Journal of Medicinal Chemistry, 2005, 48, 427-439.	2.9	42
161	Residual nitrogen effect of a dairy crop rotation as influenced by grass-clover ley management, manure type and age. Soil Use and Management, 2005, 21, 278-286.	2.6	17
162	Natural abundance and carbon storage in Danish soils under continuous silage maize. European Journal of Agronomy, 2005, 22, 107-117.	1.9	41

#	Article	IF	CITATIONS
163	CN-SIM—a model for the turnover of soil organic matter. I. Long-term carbon and radiocarbon development. Soil Biology and Biochemistry, 2005, 37, 359-374.	4.2	87
164	CN-SIM: a model for the turnover of soil organic matter. II. Short-term carbon and nitrogen development. Soil Biology and Biochemistry, 2005, 37, 375-393.	4.2	52
165	Comparison of 15NH4+ pool dilution techniques to measure gross N fluxes in a coarse textured soil. Soil Biology and Biochemistry, 2005, 37, 569-572.	4.2	16
166	Comments to â€~A 15N tracing model to analyse N transformations in old grassland soil'. Soil Biology and Biochemistry, 2005, 37, 1003-1005.	4.2	5
167	Empirical predictions of plant material C and N mineralization patterns from near infrared spectroscopy, stepwise chemical digestion and C/N ratios. Soil Biology and Biochemistry, 2005, 37, 2283-2296.	4.2	43
168	Gross N mineralization?immobilization rates in heterogeneous intact soil cores can be estimated without marked error. Biology and Fertility of Soils, 2005, 41, 280-283.	2.3	12
169	Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant and Soil, 2005, 273, 307-326.	1.8	208
170	Estimating Turnover of Soil Organic Carbon Fractions Based on Radiocarbon Measurements. Radiocarbon, 2005, 47, 99-113.	0.8	28
171	Residual nitrogen effect of a dairy crop rotation as influenced by grass–clover ley management, manure type and age. Soil Use and Management, 2005, 21, 278-286.	2.6	8
172	Effect of soil heterogeneity on gross nitrogen mineralization measured by15N-pool dilution techniques. Plant and Soil, 2004, 262, 263-275.	1.8	28
173	Mineralization of nitrogen in Danish soils, as affected by short-, medium- and long-term annual inputs of animal slurries. Biology and Fertility of Soils, 2004, 39, 352-359.	2.3	11
174	Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance. Biomass and Bioenergy, 2004, 26, 97-105.	2.9	168
175	Estimating vital statistics and age distributions of measurable soil organic carbon fractions based on their pathway of formation and radiocarbon content. Journal of Theoretical Biology, 2004, 230, 241-250.	0.8	24
176	Remote sensing mapping of soil and plants as basis for a variable-rate nutrient application system. , 2004, , .		0
177	Near Infrared Reflectance Spectroscopy for Quantification of Crop Residue, Green Manure and Catch Crop C and N Fractions Governing Decomposition Dynamics in Soil. Journal of Near Infrared Spectroscopy, 2004, 12, 331-346.	0.8	29
178	Decomposition of plant residues of different quality in soil—DAISY model calibration and simulation based on experimental data. Ecological Modelling, 2003, 166, 3-18.	1.2	54
179	Calibration and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments. Soil Biology and Biochemistry, 2003, 35, 67-76.	4.2	70
180	Catch crops and green manures as biological tools in nitrogen management in temperate zones. Advances in Agronomy, 2003, 79, 227-302.	2.4	458

#	Article	IF	CITATIONS
181	Influence of 15NH4+-application on gross N turnover rates in soil. Soil Biology and Biochemistry, 2003, 35, 603-606.	4.2	19
182	Gross nitrogen fluxes in soil : theory, measurement and application of 15N pool dilution techniques. Advances in Agronomy, 2003, 79, 69-118.	2.4	265
183	Initialisation of the soil organic matter pools of the Daisy model. Ecological Modelling, 2002, 153, 291-295.	1.2	44
184	Decomposition of white clover (Trifolium repens) and ryegrass (Lolium perenne) components: C and N dynamics simulated with the DAISY soil organic matter submodel. European Journal of Agronomy, 2002, 16, 43-55.	1.9	55
185	Low soil temperature effects on short-term gross N mineralisation–immobilisation turnover after incorporation of a green manure. Soil Biology and Biochemistry, 2001, 33, 511-521.	4.2	84
186	Soil respiration, nitrogen mineralization and uptake in barley following cultivation of grazed grasslands. Biology and Fertility of Soils, 2001, 33, 139-145.	2.3	66
187	Turnover and fate of 15N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat. European Journal of Agronomy, 2000, 12, 23-35.	1.9	77
188	Title is missing!. Plant and Soil, 1998, 203, 91-101.	1.8	32
189	Soil C and N turnover after incorporation of chopped maize, barley straw and blue grass in the field: Evaluation of the DAISY soil–organic-matter submodel. Ecological Modelling, 1998, 111, 1-15.	1.2	35
190	Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field. Soil Biology and Biochemistry, 1998, 30, 561-571.	4.2	103
191	Size-density fractionation for in situ measurements of rape straw decomposition— An alternative to the litterbag approach?. Soil Biology and Biochemistry, 1997, 29, 1125-1133.	4.2	32
192	Temporal variation of C and N mineralization, microbial biomass and extractable organic pools in soil after oilseed rape straw incorporation in the field. Soil Biology and Biochemistry, 1997, 29, 1043-1055.	4.2	138
193	A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 1997, 81, 153-225.	2.3	974
194	Simulating trends in soil organic carbon in long-term experiments using the soil-plant-atmosphere model DAISY. Geoderma, 1997, 81, 5-28.	2.3	54
195	Temporal variation of C and N turnover in soil after oilseed rape straw incorporation in the field: simulations with the soil-plant-atmosphere model DAISY. Ecological Modelling, 1997, 99, 247-262.	1.2	59
196	Title is missing!. Plant and Soil, 1997, 190, 193-202.	1.8	35
197	Soil surface CO2 flux as an index of soil respiration in situ: A comparison of two chamber methods. Soil Biology and Biochemistry, 1996, 28, 1297-1306.	4.2	169
198	Effects of soil compaction on N-mineralization and microbial-C and -N. II. Laboratory simulation. Soil and Tillage Research, 1996, 38, 189-202.	2.6	30

#	Article	IF	CITATIONS
199	Effects of soil compaction on N-mineralization and microbial-C and -N. I. Field measurements. Soil and Tillage Research, 1996, 38, 175-188.	2.6	68
200	Microscale fumigation-extraction and substrate-induced respiration methods for measuring microbial biomass in barley rhizosphere. Plant and Soil, 1994, 162, 151-161.	1.8	19
201	Reducing ammonia loss from cattle slurry by the use of acidifying additives: The role of the buffer system. Journal of the Science of Food and Agriculture, 1991, 57, 335-349.	1.7	96
202	Utilization of Biologically Treated Organic Waste on Land. , 0, , 665-682.		3