Ngai-Ching Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3087424/publications.pdf

Version: 2024-02-01

516561 434063 117 1,293 16 31 citations h-index g-index papers 120 120 120 385 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. Journal of Global Optimization, 2010, 46, 635-646.	1.1	130
2	Mappings preserving zero products. Studia Mathematica, 2003, 155, 77-94.	0.4	81
3	Weighted Composition Operators of CO(X)'s. Journal of Mathematical Analysis and Applications, 1996, 201, 981-993.	0.5	72
4	Equilibrium Problems with Applications to Eigenvalue Problems. Journal of Optimization Theory and Applications, 2003, 117, 245-266.	0.8	63
5	Convergence Analysis of Modified Hybrid Steepest-Descent Methods with Variable Parameters for Variational Inequalities. Journal of Optimization Theory and Applications, 2007, 132, 51-69.	0.8	56
6	The existence of nonlinear inequalities. Applied Mathematics Letters, 1999, 12, 89-92.	1.5	51
7	TWO GENERALIZED STRONG CONVERGENCE THEOREMS OF HALPERN'S TYPE IN HILBERT SPACES AND APPLICATIONS. Taiwanese Journal of Mathematics, 2012, 16, .	0.2	49
8	Solving variational inequalities involving nonexpansive type mappings. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69, 4732-4753.	0.6	37
9	Convergence of Hybrid Steepest–Descent Methods for Generalized Variational Inequalities. Acta Mathematica Sinica, English Series, 2006, 22, 1-12.	0.2	33
10	Maps preserving the spectrum of generalized Jordan product of operators. Linear Algebra and Its Applications, 2010, 432, 1049-1069.	0.4	31
11	Jordan isomorphisms and maps preserving spectra of certain operator products. Studia Mathematica, 2008, 184, 31-47.	0.4	31
12	STRONG CONVERGENCE THEOREMS FOR STRICTLY PSEUDOCONTRACTIVE MAPPINGS OF BROWDER-PETRYSHYN TYPE. Taiwanese Journal of Mathematics, 2006, 10, 837.	0.2	29
13	An extragradient-like approximation method for variational inequalities and fixed point problems. Fixed Point Theory and Applications, $2011,2011,\ldots$	1.1	23
14	On the degree theory for general mappings of monotone type. Journal of Mathematical Analysis and Applications, 2008, 340, 707-720.	0.5	20
15	Algorithm for generalized co-complementarity problems in Banach spaces. Computers and Mathematics With Applications, 2002, 43, 49-54.	1.4	18
16	2-Local automorphisms of operator algebras. Journal of Mathematical Analysis and Applications, 2006, 321, 741-750.	0.5	17
17	Linear disjointness preservers of W*-algebras. Mathematische Zeitschrift, 2012, 270, 699-708.	0.4	17
18	Orthogonality and disjointness preserving linear maps between Fourier and Fourier–Stieltjes algebras of locally compact groups. Journal of Functional Analysis, 2013, 265, 562-593.	0.7	17

#	Article	IF	CITATIONS
19	Linear disjointness preservers of operator algebras and related structures. Acta Scientiarum Mathematicarum, 2018, 84, 277-307.	0.2	17
20	Subgradients of value functions in parametric dynamic programming. European Journal of Operational Research, 2009, 193, 12-22.	3.5	16
21	On a class of fractional order differential inclusions with infinite delays. Applicable Analysis, 2013, 92, 115-137.	0.6	16
22	Pseudomonotone Operators: A Survey of the Theory and Its Applications. Journal of Optimization Theory and Applications, 2012, 152, 1-20.	0.8	15
23	On the Banach–Stone problem. Studia Mathematica, 2003, 155, 95-105.	0.4	14
24	Unbounded Disjointness Preserving Linear Functionals. Monatshefte Fur Mathematik, 2004, 141, 21-32.	0.5	13
25	On the Solution Existence of Generalized Quasivariational Inequalities with Discontinuous Multifunctions. Journal of Optimization Theory and Applications, 2007, 135, 515-530.	0.8	13
26	Degree theory for generalized variational inequalities and applications. European Journal of Operational Research, 2009, 192, 730-736.	3.5	13
27	Zero product preserving linear maps of CCR <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi mathvariant="normal">C</mml:mi><mml:mo></mml:mo></mml:msup></mml:math> -algebras with Hausdooff specifications, 2010, 361, 187-194.	0.5	13
28	Approximate Controllability for Systems Governed by Nonlinear Volterra Type Equations. Differential Equations and Dynamical Systems, 2012, 20, 35-52.	0.5	12
29	Fixed point solutions of variational inequalities for a finite family of asymptotically nonexpansive mappings without common fixed point assumption. Computers and Mathematics With Applications, 2008, 56, 2312-2322.	1.4	11
30	Generalized vector variational inequalities with star-pseudomonotone and discontinuous operators. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68, 2859-2871.	0.6	11
31	Solution Existence of Variational Inequalities withÂPseudomonotone Operators in the Sense of Brézis. Journal of Optimization Theory and Applications, 2009, 140, 249-263.	0.8	11
32	Disjointness preservers of AWâŽ-algebras. Linear Algebra and Its Applications, 2018, 552, 71-84.	0.4	11
33	Zero product preserving maps of operator-valued functions. Proceedings of the American Mathematical Society, 2004, 132, 1979-1985.	0.4	11
34	Fixed point theorems and convergence theorems for generalized nonspreading mappings in Banach spaces. Journal of Fixed Point Theory and Applications, 2012, 11, 159-183.	0.6	10
35	Invertibility and Fredholmness of linear combinations of quadratic, k-potent and nilpotent operators. Operators and Matrices, 2008, , 193-199.	0.1	10
36	ISHIKAWA ITERATION WITH ERRORS FOR APPROXIMATING FIXED POINTS OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS OF BROWDER-PETRYSHYN TYPE. Taiwanese Journal of Mathematics, 2006, 10, 87.	0.2	9

#	Article	IF	CITATIONS
37	STRONG CONVERGENCE THEOREMS OF ISHIKAWA ITERATION PROCESS WITH ERRORS FOR FIXED POINTS OF LIPSCHITZ CONTINUOUS MAPPINGS IN BANACH SPACES. Taiwanese Journal of Mathematics, 2006, 10, 543.	0.2	9
38	LINEAR ORTHOGONALITY PRESERVERS OF STANDARD OPERATOR ALGEBRAS. Taiwanese Journal of Mathematics, 2010, 14 , .	0.2	9
39	Isometries between C*-algebras. Revista Matematica Iberoamericana, 2004, 20, 87-105.	0.4	9
40	Topologies and bornologies determined by operator ideals. Mathematische Annalen, 1988, 282, 587-614.	0.7	8
41	Into Isometries ofCO(X,E)s. Journal of Mathematical Analysis and Applications, 1997, 207, 286-290.	0.5	8
42	A Banach-Stone theorem for Riesz isomorphisms of Banach lattices. Proceedings of the American Mathematical Society, 2008, 136, 3869-3874.	0.4	8
43	LINEAR ORTHOGONALITY PRESERVERS OF HILBERT BUNDLES. Journal of the Australian Mathematical Society, 2010, 89, 245-254.	0.3	8
44	Kaplansky Theorem for completely regular spaces. Proceedings of the American Mathematical Society, 2014, 142, 1381-1389.	0.4	8
45	Transition probabilities of normal states determine the Jordan structure of a quantum system. Journal of Mathematical Physics, 2016, 57, .	0.5	8
46	Geometric unitaries in JB-algebras. Journal of Mathematical Analysis and Applications, 2009, 360, 491-494.	0.5	7
47	Linear orthogonality preservers of Hilbert C^{*} -modules over C^{*} -algebras with real rank zero. Proceedings of the American Mathematical Society, 2012, 140, 3151-3160.	0.4	7
48	Some geometric properties inherited by the positive tensor products of atomic Banach lattices. Indagationes Mathematicae, 2012, 23, 199-213.	0.2	6
49	Banach–Stone theorems for vector valued functions on completely regular spaces. Journal of Mathematical Analysis and Applications, 2012, 395, 265-274.	0.5	6
50	Approximating fixed points of α-nonexpansive mappings in uniformly convex Banach spaces and "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" spaces. Fixed Point Theory and Applications, 2013, 2013, .	1.1	6
51	Linear orthogonality preservers of Hilbert \$C^*\$-modules. Journal of Operator Theory, 2014, 71, 571-584.	0.2	6
52	The spectrum of the product of operators, and the product of their numerical ranges. Linear Algebra and Its Applications, 2015, 469, 487-499.	0.4	6
53	Generalized n-circular projections on JB*-triples and Hilbert CO(\hat{I} ©)-modules. Concrete Operators, 2017, 4, 109-120.	0.1	6
54	Perturbed iterative methods for a general family of operators: convergence theory and applications. Optimization, 2021, 70, 1047-1083.	1.0	6

#	Article	IF	CITATIONS
55	On a variant of Tingley's problem for some function spaces. Journal of Mathematical Analysis and Applications, 2021, 496, 124800.	0.5	6
56	Invertibility in infinite-dimensional spaces. Proceedings of the American Mathematical Society, 1999, 128, 573-581.	0.4	6
57	Isometric shifts on CO(X). Journal of Mathematical Analysis and Applications, 2002, 274, 772-787.	0.5	5
58	Continuous selections and fixed points of multi-valued mappings on noncompact or nonmetrizable spaces. Proceedings of the American Mathematical Society, 2005, 133, 3421-3427.	0.4	5
59	xmins:xocs="http://www.elsevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ya="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.5	5
60	SEPARATING LINEAR MAPS OF CONTINUOUS FIELDS OF BANACH SPACES. Asian-European Journal of Mathematics, 2009, 02, 445-452.	0.2	5
61	The structure of compact disjointness preserving operators on continuous functions. Mathematische Nachrichten, 2009, 282, 1009-1021.	0.4	5
62	Well-Posedness for a Class of Strongly Mixed Variational-Hemivariational Inequalities with Perturbations. Journal of Applied Mathematics, 2012, 2012, 1-21.	0.4	5
63	FIXED POINT THEOREMS FOR NEW GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES AND APPLICATIONS. Taiwanese Journal of Mathematics, 2013, 17, .	0.2	5
64	Applications of Bregman-Opial Property to Bregman Nonspreading Mappings in Banach Spaces. Abstract and Applied Analysis, 2014, 2014, 1-14.	0.3	5
65	Normal states are determined by their facial distances. Bulletin of the London Mathematical Society, 2020, 52, 505-514.	0.4	5
66	HAHN-BANACH-KANTOROVICH TYPE THEOREMS WITH THE RANGE SPACE NOT NECESSARILY (O)-COMPLETE. Taiwanese Journal of Mathematics, 2002, 6, .	0.2	5
67	AN ALGEBRAIC APPROACH TO THE BANACH-STONE THEOREM FOR SEPARATING LINEAR BIJECTIONS. Tailyanese Journal of Mathematics, 2002 6. Disjointness preserving shifts on small math altimg="si1.gif" overflow="scroll"	0.2	5
68	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.5	4
69	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.co. Attractive points and Halpern-type strong convergence theorems in Hilbert spaces. Journal of Fixed Point Theory and Applications, 2015, 17, 301-311.	0.6	4
70	LOCAL AUTOMORPHISMS OF OPERATOR ALGEBRAS. Taiwanese Journal of Mathematics, 2007, 11, .	0.2	4
71	Some converses of the strong separation theorem. Proceedings of the American Mathematical Society, 1996, 124, 2443-2449.	0.4	3
72	Convergence analysis of iterative sequences for a pair of mappings in Banach spaces. Acta Mathematica Sinica, English Series, 2008, 24, 463-470.	0.2	3

#	Article	IF	CITATIONS
73	Iterative common solutions for monotone inclusion problems, fixed point problems and equilibrium problems. Fixed Point Theory and Applications, 2012, 2012, 181.	1.1	3
74	Fixed point theorems for nonlinear non-self mappings in Hilbert spaces and applications. Fixed Point Theory and Applications, 2013, 2013, 116.	1.1	3
75	Orthogonally additive and orthogonally multiplicative holomorphic functions of matrices. Annals of Functional Analysis, 2014, 5, 80-89.	0.3	3
76	Maps on positive definite operators preserving the quantum $\frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} + \frac{1}{2}$	0.5	3
77	Topologies and bornologies determined by operator ideals, II. Studia Mathematica, 1994, 111, 153-162.	0.4	3
78	Constructing space-filling curves of compact connected manifolds. Computers and Mathematics With Applications, 2003, 45, 1871-1881.	1.4	2
79	The Bornologically Surjective Hull of an Operator Ideal on Locally Convex Spaces. Mathematische Nachrichten, 1993, 160, 265-275.	0.4	2
80	Long-time behaviour for a model of porous-medium equations with variable coefficients. Optimization, 2011, 60, 709-724.	1.0	2
81	Regularized hybrid iterative algorithms for triple hierarchical variational inequalities. Journal of Inequalities and Applications, 2014, 2014, .	0.5	2
82	Nonlinear Ergodic Theorem for Positively Homogeneous Nonexpansive Mappings in Banach Spaces. Numerical Functional Analysis and Optimization, 2014, 35, 85-98.	0.6	2
83	Weak sequential completeness of spaces of homogeneous polynomials. Journal of Mathematical Analysis and Applications, 2015, 427, 1119-1130.	0.5	2
84	ORTHOGONALLY ADDITIVE AND MULTIPLICATIVE POLYNOMIALS AND HOLOMORPHIC MAPS BETWEEN FOURIER ALGEBRAS. Quarterly Journal of Mathematics, 2016, 67, 125-136.	0.3	2
85	Isometries of real Hilbert CâŽ-modules. Journal of Mathematical Analysis and Applications, 2016, 438, 807-827.	0.5	2
86	The positive contractive part of a noncommutative L-space is a complete Jordan invariant. Linear Algebra and Its Applications, 2017, 519, 102-110.	0.4	2
87	Generalized -D-gap functions and error bounds for a class of equilibrium problems. Applicable Analysis, 2017, 96, 2367-2389.	0.6	2
88	Metric semigroups that determine locally compact groups. Quarterly Journal of Mathematics, 2018, 69, 501-508.	0.3	2
89	SMOOTHLY EMBEDDED SUBSPACES OF A BANACH SPACE. Taiwanese Journal of Mathematics, 2010, 14, .	0.2	2
90	ISOMETRIC EMBEDDINGS OF BANACH BUNDLES. Taiwanese Journal of Mathematics, 2011, 15, .	0.2	2

#	Article	IF	CITATIONS
91	On the solution existence of implicit quasivariational inequalities with discontinuous multifunctions. Optimization, 2008, 57, 515-526.	1.0	1
92	Asymptotic Behavior for Retarded Parabolic Equations with Superlinear Perturbations. Journal of Optimization Theory and Applications, 2010, 146, 117-135.	0.8	1
93	Strong convergence theorems by a hybrid extragradient-like approximation method for asymptotically nonexpansive mappings in the intermediate sense in Hilbert spaces. Journal of Inequalities and Applications, 2011, 2011, .	0.5	1
94	On Semilinear Integro-Differential Equations with Nonlocal Conditions in Banach Spaces. Abstract and Applied Analysis, 2012, 2012, 1-26.	0.3	1
95	Superimposed optimization methods for the mixed equilibrium problem and variational inclusion. Journal of Global Optimization, 2013, 57, 935-950.	1.1	1
96	Strong Convergence Theorems for Semigroups of Asymptotically Nonexpansive Mappings in Banach Spaces. Abstract and Applied Analysis, 2013, 2013, 1-8.	0.3	1
97	Maps Preserving Schattenp-Norms of Convex Combinations. Abstract and Applied Analysis, 2014, 2014, 1-5.	0.3	1
98	On a notion of closeness of groups. Annals of Functional Analysis, 2016, 7, 24-32.	0.3	1
99	Metric semi-groups of normal states determine F-algebras. Quarterly Journal of Mathematics, 2019, 70, 429-450.	0.3	1
100	The Bregman–Opial Property and Bregman Generalized Hybrid Maps of Reflexive Banach Spaces. Mathematics, 2020, 8, 1022.	1,1	1
101	Additive Hermitian idempotent preservers between operator algebras. Journal of Mathematical Analysis and Applications, 2022, 505, 125522.	0.5	1
102	THE DENSITY OF ALGEBRAIC ELEMENTS IN Câ^—-ALGEBRAS. Taiwanese Journal of Mathematics, 2008, 12, .	0.2	1
103	Left quotients of a C*-algebra, III: Operators on left quotients. Studia Mathematica, 2013, 218, 189-217.	0.4	1
104	ON C¤ALGEBRAS CUT DOWN BY CLOSED PROJECTIONS: CHARACTERIZING ELEMENTS VIA THE EXTREME BOUNDARY. Taiwanese Journal of Mathematics, 2001, 5, .	0.2	1
105	On convergence analysis of an iterative algorithm for finding common solution of generalized mixed equilibrium problems and fixed point problems. Mathematical Inequalities and Applications, 2009, , 625-649.	0.1	1
106	Comparisons of equivalence relations on open projections. Journal of Operator Theory, 2015, 74, .	0.2	1
107	Orthogonally additive holomorphic maps between C * -algebras. Studia Mathematica, 0, , 1-22.	0.4	1
108	Some Modified Extragradient Methods for Common Solutions of Generalized Equilibrium Problems and Fixed Points of Nonexpansive Mappings. Taiwanese Journal of Mathematics, 2011, 15, .	0.2	0

#	Article	IF	CITATIONS
109	Operator Ideals Arising from Generating Sequences. , 2011, , .		O
110	Attractive point and mean convergence theorems for semigroups of mappings without continuity in Banach spaces. Journal of Fixed Point Theory and Applications, 2014, 16, 203-227.	0.6	0
111	Recent Development in Fixed-Point Theory, Optimization, and Their Applications. Abstract and Applied Analysis, 2014, 2014, 1-2.	0.3	O
112	Preserver Problems on Function Spaces, Operator Algebras, and Related Topics. Abstract and Applied Analysis, 2014, 2014, 1-2.	0.3	0
113	On the decomposition into Discrete, Type II and Type III C*-algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 2018, 165, 475-509.	0.3	O
114	The structure of linear zero product and commutativity preservers of \$\$C^*\$\$-algebras. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2021, 115, 1.	0.6	0
115	RANK PRESERVING IN INTEGRAL EXTENSIONS OF COMMUTATIVE \$C^*\$-ALGEBRAS. Taiwanese Journal of Mathematics, 2012, 16, .	0.2	0
116	Locating common fixed points of nonlinear representations of semigroups. Filomat, 2019, 33, 147-161.	0.2	0
117	Nonlinear Evolutionary Systems Driven by Set-Valued Mixed Equilibrium Problems. Numerical Functional Analysis and Optimization, 0, , 1-17.	0.6	0