Javier Aizpurua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3087052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
2	Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Physical Review E, 2000, 62, 4318-4324.	0.8	1,484
3	Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498, 82-86.	13.7	1,437
4	Revealing the quantum regime in tunnelling plasmonics. Nature, 2012, 491, 574-577.	13.7	939
5	Bridging quantum and classical plasmonics with a quantum-corrected model. Nature Communications, 2012, 3, 825.	5.8	797
6	Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Optics Express, 2006, 14, 9988.	1.7	731
7	Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption. ACS Nano, 2008, 2, 707-718.	7.3	730
8	Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection. Physical Review Letters, 2008, 101, 157403.	2.9	634
9	Strong magnetic response of submicron Silicon particles in the infrared. Optics Express, 2011, 19, 4815.	1.7	626
10	Single-molecule optomechanics in "picocavities― Science, 2016, 354, 726-729.	6.0	607
11	Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nature Communications, 2016, 7, 11495.	5.8	605
12	Metalâ€nanoparticle plasmonics. Laser and Photonics Reviews, 2008, 2, 136-159.	4.4	592
13	Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Physical Review B, 2005, 71, .	1.1	534
14	Extreme nanophotonics from ultrathin metallic gaps. Nature Materials, 2019, 18, 668-678.	13.3	488
15	Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices. Nano Letters, 2008, 8, 3766-3770.	4.5	483
16	Close Encounters between Two Nanoshells. Nano Letters, 2008, 8, 1212-1218.	4.5	462
17	Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photonics, 2009, 3, 287-291.	15.6	424
18	Quantum Plasmonics: Nonlinear Effects in the Field Enhancement of a Plasmonic Nanoparticle Dimer. Nano Letters, 2012, 12, 1333-1339.	4.5	424

#	Article	IF	CITATIONS
19	Mapping the Plasmon Resonances of Metallic Nanoantennas. Nano Letters, 2008, 8, 631-636.	4.5	354
20	Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers. Journal of Physical Chemistry C, 2013, 117, 13573-13584.	1.5	347
21	Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[<i>n</i>]uril "Glue― ACS Nano, 2011, 5, 3878-3887.	7.3	322
22	All-Optical Control of a Single Plasmonic Nanoantenna–ITO Hybrid. Nano Letters, 2011, 11, 2457-2463.	4.5	259
23	Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics. Nano Letters, 2015, 15, 3410-3419.	4.5	257
24	Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light: Science and Applications, 2018, 7, 17172-17172.	7.7	257
25	Roadmap on plasmonics. Journal of Optics (United Kingdom), 2018, 20, 043001.	1.0	240
26	Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities. Nano Letters, 2010, 10, 3090-3095.	4.5	221
27	Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene. Nano Letters, 2013, 13, 5033-5038.	4.5	210
28	Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nature Communications, 2012, 3, 684.	5.8	207
29	Robust Subnanometric Plasmon Ruler by Rescaling of the Nonlocal Optical Response. Physical Review Letters, 2013, 110, 263901.	2.9	198
30	Electromagnetic field enhancement in TERS configurations. Journal of Raman Spectroscopy, 2009, 40, 1343-1348.	1.2	187
31	Resonances of individual metal nanowires in the infrared. Applied Physics Letters, 2006, 89, 253104.	1.5	176
32	Plasmonic Nickel Nanoantennas. Small, 2011, 7, 2341-2347.	5.2	175
33	Dielectric antennas - a suitable platform for controlling magnetic dipolar emission. Optics Express, 2012, 20, 13636.	1.7	169
34	Nanooptics of Molecular-Shunted Plasmonic Nanojunctions. Nano Letters, 2015, 15, 669-674.	4.5	162
35	Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nature Communications, 2017, 8, 15225.	5.8	158
36	Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe. Applied Physics Letters, 2003, 83, 368-370.	1.5	157

#	Article	IF	CITATIONS
37	Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultracompact Optical Switches. Nano Letters, 2010, 10, 1741-1746.	4.5	155
38	Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect. ACS Nano, 2018, 12, 585-595.	7.3	155
39	Sub-nanometre resolution in single-molecule photoluminescence imaging. Nature Photonics, 2020, 14, 693-699.	15.6	152
40	Nanohole Plasmons in Optically Thin Gold Films. Journal of Physical Chemistry C, 2007, 111, 1207-1212.	1.5	151
41	A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Faraday Discussions, 2015, 178, 151-183.	1.6	151
42	Phase-Resolved Mapping of the Near-Field Vector and Polarization State in Nanoscale Antenna Gaps. Nano Letters, 2010, 10, 3524-3528.	4.5	150
43	Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. Optics Express, 2013, 21, 27306.	1.7	149
44	Multipolar Plasmon Resonances in Individual Ag Nanorice. ACS Nano, 2010, 4, 2649-2654.	7.3	146
45	Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas. Physical Review Letters, 2013, 110, 203902.	2.9	144
46	Threading plasmonic nanoparticle strings with light. Nature Communications, 2014, 5, 4568.	5.8	144
47	Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nature Communications, 2017, 8, 14891.	5.8	138
48	Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Letters, 2018, 18, 2358-2364.	4.5	137
49	Electromagnetic Resonances of Silicon Nanoparticle Dimers in the Visible. ACS Photonics, 2015, 2, 913-920.	3.2	136
50	Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities. ACS Nano, 2016, 10, 6291-6298.	7.3	133
51	Rabi Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods and J-Aggregates. Journal of Physical Chemistry Letters, 2016, 7, 354-362.	2.1	132
52	Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core–Shell Junction to Subnanometer. Nano Letters, 2015, 15, 6419-6428.	4.5	119
53	Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps. Physical Review A, 2015, 92, .	1.0	113
54	Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nature Communications, 2017, 8, 95.	5.8	111

#	Article	IF	CITATIONS
55	A classical description of subnanometer resolution by atomic features in metallic structures. Nanoscale, 2017, 9, 391-401.	2.8	108
56	Influence of the tip in near-field imaging of nanoparticle plasmonic modes: Weak and strong coupling regimes. Physical Review B, 2009, 79, .	1.1	104
57	Substrate-enhanced infrared near-field spectroscopy. Optics Express, 2008, 16, 1529.	1.7	103
58	Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavities. ACS Nano, 2015, 9, 825-830.	7.3	101
59	The Morphology of Narrow Gaps Modifies the Plasmonic Response. ACS Photonics, 2015, 2, 295-305.	3.2	99
60	Strain effects on the electronic structure of strongly coupled self-assembledInAsâ^•GaAsquantum dots: Tight-binding approach. Physical Review B, 2006, 74, .	1.1	96
61	Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes. Optics Express, 2011, 19, 15047.	1.7	94
62	Amplitude- and Phase-Resolved Near-Field Mapping of Infrared Antenna Modes by Transmission-Mode Scattering-Type Near-Field Microscopy. Journal of Physical Chemistry C, 2010, 114, 7341-7345.	1.5	91
63	Room-Temperature Optical Picocavities below 1 nm ³ Accessing Single-Atom Geometries. Journal of Physical Chemistry Letters, 2018, 9, 7146-7151.	2.1	88
64	Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. Light: Science and Applications, 2016, 5, e16173-e16173.	7.7	87
65	Sub-femtosecond electron transport in a nanoscale gap. Nature Physics, 2020, 16, 341-345.	6.5	86
66	Plasmonic Nanobilliards: Controlling Nanoparticle Movement Using Forces Induced by Swift Electrons. Nano Letters, 2011, 11, 3388-3393.	4.5	85
67	Infrared Imaging of Single Nanoparticles via Strong Field Enhancement in a Scanning Nanogap. Physical Review Letters, 2006, 97, 060801.	2.9	81
68	Mapping the near fields of plasmonic nanoantennas by scatteringâ€ŧype scanning nearâ€field optical microscopy. Laser and Photonics Reviews, 2015, 9, 637-649.	4.4	81
69	How Chain Plasmons Govern the Optical Response in Strongly Interacting Self-Assembled Metallic Clusters of Nanoparticles. Langmuir, 2012, 28, 8881-8890.	1.6	77
70	Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. Nature Nanotechnology, 2020, 15, 207-211.	15.6	77
71	Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems. Physical Review B, 2011, 83, .	1.1	76
72	Ultrafast Nonlinear Control of Progressively Loaded, Single Plasmonic Nanoantennas Fabricated Using Helium Ion Milling. Nano Letters, 2013, 13, 5647-5653.	4.5	76

#	Article	IF	CITATIONS
73	Importance of Plasmonic Scattering for an Optimal Enhancement of Vibrational Absorption in SEIRA with Linear Metallic Antennas. Journal of Physical Chemistry C, 2015, 119, 26652-26662.	1.5	75
74	Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity. Nano Letters, 2016, 16, 2533-2542.	4.5	67
75	Active quantum plasmonics. Science Advances, 2015, 1, e1501095.	4.7	66
76	Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces. Nano Letters, 2016, 16, 663-670.	4.5	64
77	Generalized circuit model for coupled plasmonic systems. Optics Express, 2015, 23, 33255.	1.7	62
78	lmage potential in scanning transmission electron microscopy. Progress in Surface Science, 2000, 65, 1-64.	3.8	59
79	Combined Electrochromic and Plasmonic Optical Responses in Conducting Polymer/Metal Nanoparticle Films. Journal of Nanoscience and Nanotechnology, 2007, 7, 2938-2941.	0.9	59
80	Irreversible Thermochromic Behavior in Gold and Silver Nanorod/Polymeric Ionic Liquid Nanocomposite Films. ACS Applied Materials & amp; Interfaces, 2009, 1, 348-352.	4.0	54
81	Multiscale Theoretical Modeling of Plasmonic Sensing of Hydrogen Uptake in Palladium Nanodisks. Journal of Physical Chemistry Letters, 2012, 3, 2556-2561.	2.1	54
82	Plexciton Quenching by Resonant Electron Transfer from Quantum Emitter to Metallic Nanoantenna. Nano Letters, 2013, 13, 5972-5978.	4.5	53
83	Anomalous Spectral Shift of Near- and Far-Field Plasmonic Resonances in Nanogaps. ACS Photonics, 2016, 3, 471-477.	3.2	53
84	Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. Optics Express, 2013, 21, 1270.	1.7	52
85	Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime. ACS Nano, 2016, 10, 1346-1354.	7.3	51
86	Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps. New Journal of Physics, 2011, 13, 083013.	1.2	50
87	Gold Nanorods with Subâ€Nanometer Separation using Cucurbit[<i>n</i>]uril for SERS Applications. Small, 2014, 10, 4298-4303.	5.2	50
88	Origin of the asymmetric light emission from molecular exciton–polaritons. Optica, 2018, 5, 1247.	4.8	49
89	Effect of Mechanical Strain on the Optical Properties of Quantum Dots: Controlling Exciton Shape, Orientation, and Phase with a Mechanical Strain. Physical Review Letters, 2010, 105, 067404.	2.9	48
90	Strong coupling of single emitters interacting with phononic infrared antennae. New Journal of Physics, 2014, 16, 013052.	1.2	48

#	Article	IF	CITATIONS
91	Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams. Physical Review B, 2008, 78, .	1.1	47
92	Linking classical and molecular optomechanics descriptions of SERS. Faraday Discussions, 2017, 205, 31-65.	1.6	47
93	Pulsed Molecular Optomechanics in Plasmonic Nanocavities: From Nonlinear Vibrational Instabilities to Bond-Breaking. Physical Review X, 2018, 8, .	2.8	47
94	Interference, Coupling, and Nonlinear Control of High-Order Modes in Single Asymmetric Nanoantennas. ACS Nano, 2012, 6, 6462-6470.	7.3	46
95	Optimizing SERS from Gold Nanoparticle Clusters: Addressing the Near Field by an Embedded Chain Plasmon Model. Journal of Physical Chemistry C, 2016, 120, 10512-10522.	1.5	46
96	Vibrational Spectroscopy of Water with High Spatial Resolution. Advanced Materials, 2018, 30, e1802702.	11.1	45
97	Gold nanoring trimers: a versatile structure for infrared sensing. Optics Express, 2010, 18, 22271.	1.7	44
98	Plasmon-Assisted Nd ³⁺ -Based Solid-State Nanolaser. Nano Letters, 2016, 16, 895-899.	4.5	44
99	Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nature Communications, 2021, 12, 1310.	5.8	44
100	Acousto-plasmonic Hot Spots in Metallic Nano-Objects. Nano Letters, 2009, 9, 3732-3738.	4.5	43
101	Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics. ACS Photonics, 2016, 3, 269-277.	3.2	43
102	Plasmonic excitation and manipulation with an electron beam. MRS Bulletin, 2012, 37, 752-760.	1.7	42
103	Plasmon Response and Electron Dynamics in Charged Metallic Nanoparticles. Langmuir, 2016, 32, 2829-2840.	1.6	42
104	Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators. Optics Express, 2012, 20, 5052.	1.7	41
105	Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter. Optics Express, 2011, 19, 5587.	1.7	40
106	Strong coupling between phonon-polaritons and plasmonic nanorods. Optics Express, 2016, 24, 25528.	1.7	39
107	Electromagnetic forces on plasmonic nanoparticles induced by fast electron beams. Physical Review B, 2010, 82, .	1.1	36
108	Nanoparticle movement: Plasmonic forces and physical constraints. Ultramicroscopy, 2012, 123, 50-58.	0.8	36

#	Article	IF	CITATIONS
109	Optical Response of Metallic Nanoparticle Heteroaggregates with Subnanometric Gaps. Particle and Particle Systems Characterization, 2014, 31, 152-160.	1.2	36
110	Simple Composite Dipole Model for the Optical Modes of Strongly-Coupled Plasmonic Nanoparticle Aggregates. Journal of Physical Chemistry C, 2012, 116, 25044-25051.	1.5	35
111	Isotropically Polarized Speckle Patterns. Physical Review Letters, 2015, 114, 113902.	2.9	35
112	Surface-Enhanced Molecular Electron Energy Loss Spectroscopy. ACS Nano, 2018, 12, 4775-4786.	7.3	35
113	Monitoring Earlyâ€Stage Nanoparticle Assembly in Microdroplets by Optical Spectroscopy and SERS. Small, 2016, 12, 1788-1796.	5.2	34
114	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	1.6	34
115	<title>Interparticle coupling effects in surface-enhanced Raman scattering</title> ., 2001, , .		32
116	Light scattering in gold nanorings. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 89, 11-16.	1.1	32
117	Role of electron tunneling in the nonlinear response of plasmonic nanogaps. Physical Review B, 2018, 97, .	1.1	30
118	Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods. Applied Physics Letters, 2010, 96, 213111.	1.5	29
119	Antenna resonances in low aspect ratio semiconductor nanowires. Optics Express, 2015, 23, 22771.	1.7	29
120	Surface-Enhanced Circular Dichroism Spectroscopy on Periodic Dual Nanostructures. ACS Photonics, 2020, 7, 2978-2986.	3.2	29
121	Flickering nanometre-scale disorder in a crystal lattice tracked by plasmonic flare light emission. Nature Communications, 2020, 11, 682.	5.8	28
122	Optical transport and sensing in plexcitonic nanocavities. Optics Express, 2013, 21, 15847.	1.7	27
123	Theory of SERS enhancement: general discussion. Faraday Discussions, 2017, 205, 173-211.	1.6	27
124	Quantum description of surface-enhanced resonant Raman scattering within a hybrid-optomechanical model. Physical Review A, 2019, 100, .	1.0	27
125	Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime. Nature Communications, 2021, 12, 6206.	5.8	27
126	Optomechanical Collective Effects in Surface-Enhanced Raman Scattering from Many Molecules. ACS Photonics, 2020, 7, 1676-1688.	3.2	25

#	Article	IF	CITATIONS
127	Controlling the optics of quantum dots with nanomechanical strain. Physical Review B, 2011, 84, .	1.1	24
128	Enhanced Light–Matter Interaction in ¹⁰ B Monoisotopic Boron Nitride Infrared Nanoresonators. Advanced Optical Materials, 2021, 9, 2001958.	3.6	24
129	Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration. Photonics Research, 2021, 9, 2398.	3.4	24
130	Vibrational electron energy loss spectroscopy in truncated dielectric slabs. Physical Review B, 2018, 98, .	1.1	23
131	Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon–exciton systems. Nanophotonics, 2020, 9, 295-308.	2.9	23
132	Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope. Journal of Chemical Physics, 2009, 130, 084706.	1.2	22
133	Gold―and Silver oated Barium Titanate Nanocomposites as Probes for Twoâ€Photon Multimodal Microspectroscopy. Advanced Functional Materials, 2019, 29, 1904289.	7.8	22
134	Dynamics of hot electron generation in metallic nanostructures: general discussion. Faraday Discussions, 2019, 214, 123-146.	1.6	21
135	Gold Spiky Nanodumbbells: Anisotropy in Gold Nanostars. Particle and Particle Systems Characterization, 2014, 31, 77-80.	1.2	20
136	Metamaterial Platforms for Spintronic Modulation of Mid-Infrared Response under Very Weak Magnetic Field. ACS Photonics, 2018, 5, 3956-3961.	3.2	20
137	Control of single emitter radiation by polarization- and position-dependent activation of dark antenna modes. Optics Letters, 2012, 37, 1017.	1.7	19
138	Active loaded plasmonic antennas at terahertz frequencies: Optical control of their capacitive-inductive coupling. Physical Review B, 2015, 91, .	1.1	19
139	Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas. Optics Express, 2015, 23, 8134.	1.7	19
140	Addressing molecular optomechanical effects in nanocavity-enhanced Raman scattering beyond the single plasmonic mode. Nanoscale, 2021, 13, 1938-1954.	2.8	19
141	Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO_4 crystals by aggregates of silver nanostructures. Optics Express, 2016, 24, 8491.	1.7	18
142	Theoretical treatment of singleâ€molecule scanning Raman picoscopy in strongly inhomogeneous near fields. Journal of Raman Spectroscopy, 2021, 52, 296-309.	1.2	18
143	Applications of plasmonics: general discussion. Faraday Discussions, 2015, 178, 435-466.	1.6	17
144	Active control of ultrafast electron dynamics in plasmonic gaps using an applied bias. Physical Review B, 2020, 101, .	1.1	17

#	Article	IF	CITATIONS
145	Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering. Accounts of Chemical Research, 2022, 55, 1889-1899.	7.6	17
146	Self-sifting of chain plasmons: the complex optics of Au nanoparticle clusters. Optics Express, 2013, 21, 32377.	1.7	16
147	Optical properties and sensing in plexcitonic nanocavities: from simple molecular linkers to molecular aggregate layers. Nanotechnology, 2014, 25, 035201.	1.3	16
148	Plasmonic and new plasmonic materials: general discussion. Faraday Discussions, 2015, 178, 123-149.	1.6	16
149	Influence of the Chemical Structure on Molecular Light Emission in Strongly Localized Plasmonic Fields. Journal of Physical Chemistry C, 2020, 124, 4674-4683.	1.5	16
150	Tight-Binding Method and Multiband Effective Mass Theory Applied to CdS Nanocrystals:Â Single-Particle Effects and Optical Spectra Fine Structure. Journal of Physical Chemistry B, 2004, 108, 17800-17804.	1.2	15
151	Dielectric antennas - a suitable platform for controlling magnetic dipolar emission: errata. Optics Express, 2012, 20, 18609.	1.7	15
152	Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods. Physical Chemistry Chemical Physics, 2014, 16, 9015.	1.3	15
153	Dynamics of electron-emission currents in plasmonic gaps induced by strong fields. Faraday Discussions, 2019, 214, 147-157.	1.6	15
154	Controlling solid state gain media by deposition of silver nanoparticles: from thermally- quenched to plasmon-enhanced Nd^3+ luminescence. Optics Express, 2015, 23, 15670.	1.7	14
155	Attosecond and femtosecond forces exerted on gold nanoparticles induced by swift electrons. Physical Review B, 2016, 93, .	1.1	14
156	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	1.6	14
157	Optical response of threaded chain plasmons: from capacitive chains to continuous nanorods. Optics Express, 2014, 22, 23851.	1.7	13
158	Mapping Lamb, Stark, and Purcell Effects at a Chromophore-Picocavity Junction with Hyper-Resolved Fluorescence Microscopy. Physical Review X, 2022, 12, .	2.8	13
159	Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles. Journal of Luminescence, 2016, 169, 569-573.	1.5	12
160	Optomechanics goes molecular. Nature Nanotechnology, 2016, 11, 114-115.	15.6	12
161	Special Issue on "Strong Coupling of Molecules to Cavities― ACS Photonics, 2018, 5, 1-1.	3.2	12
162	Second-Harmonic Generation from a Quantum Emitter Coupled to a Metallic Nanoantenna. ACS Photonics, 2020, 7, 701-713.	3.2	12

#	Article	IF	CITATIONS
163	Infrared phononic nanoantennas: Localized surface phonon polaritons in SiC disks. Science Bulletin, 2010, 55, 2625-2628.	1.7	11
164	Chemical sensing based on the plasmonic response of nanoparticle aggregation: anion sensing in nanoparticles stabilized by amino-functional ionic liquid. Frontiers of Physics in China, 2010, 5, 330-336.	1.0	11
165	A combination of concave/convex surfaces for field-enhancement optimization: the indented nanocone. Optics Express, 2012, 20, 25201.	1.7	11
166	Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330.	1.6	11
167	Nanocrystal molecules and chains. Journal of Chemical Physics, 2003, 119, 7484-7490.	1.2	10
168	Broad band infrared modulation using spintronic-plasmonic metasurfaces. Nanophotonics, 2019, 8, 1847-1854.	2.9	10
169	A novel vibrational spectroscopy using spintronic–plasmonic antennas: Magneto-refractive surface-enhanced infrared absorption. Journal of Applied Physics, 2021, 129, .	1.1	10
170	Electromagnetic Nanowire Resonances for Field-Enhanced Spectroscopy. , 2008, , 175-215.		10
171	Localized Surface Plasmons: Basics and Applications in Field-Enhanced Spectroscopy. Springer Series in Optical Sciences, 2012, , 151-176.	0.5	9
172	Quantum effects in the plasmon response of bimetallic core-shell nanostructures. Optics Express, 2016, 24, 23941.	1.7	9
173	Quantum description of the optical response of charged monolayer–thick metallic patch nanoantennas. Physical Review B, 2017, 95, .	1.1	9
174	New materials for hot electron generation: general discussion. Faraday Discussions, 2019, 214, 365-386.	1.6	9
175	Probing and steering bulk and surface phonon polaritons in uniaxial materials using fast electrons: Hexagonal boron nitride. Physical Review B, 2020, 102, .	1.1	9
176	Controlling surface charge and spin density oscillations by Dirac plasmon interaction in thin topological insulators. Physical Review B, 2018, 97, .	1.1	8
177	Electronic Exciton–Plasmon Coupling in a Nanocavity Beyond the Electromagnetic Interaction Picture. Nano Letters, 2021, 21, 8466-8473.	4.5	8
178	Magnetic modulation of far- and near-field IR properties in rod-slit complementary spintronic metasurfaces. Optics Express, 2020, 28, 32584.	1.7	8
179	Self-assembled flat-faceted nanoparticles chains as a highly-tunable platform for plasmon-enhanced spectroscopy in the infrared. Optics Express, 2017, 25, 13760.	1.7	7
180	Quantum surface effects in the electromagnetic coupling between a quantum emitter and a plasmonic nanoantenna: time-dependent density functional theory vs. semiclassical Feibelman approach. Optics Express, 2022, 30, 21159.	1.7	7

#	Article	IF	CITATIONS
181	Probing the Radiative Electromagnetic Local Density of States in Nanostructures with a Scanning Tunneling Microscope. ACS Photonics, 2020, 7, 1280-1289.	3.2	6
182	Electric Field-Induced High Order Nonlinearity in Plasmonic Nanoparticles Retrieved with Time-Dependent Density Functional Theory. ACS Photonics, 2017, 4, 613-620.	3.2	5
183	Applications in catalysis, photochemistry, and photodetection: general discussion. Faraday Discussions, 2019, 214, 479-499.	1.6	5
184	Many-body physics in small systems: Observing the onset and saturation of correlation in linear atomic chains. Physical Review B, 2021, 103, .	1.1	5
185	Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects. , 2006, , .		4
186	Optical excitation of acoustic surface plasmons in metallic nanoparticles. Annalen Der Physik, 2012, 524, 751-756.	0.9	4
187	Quantum plasmonics, gain and spasers: general discussion. Faraday Discussions, 2015, 178, 325-334.	1.6	4
188	Single-nanoantenna driven nanoscale control of the VO ₂ insulator to metal transition. Nanophotonics, 2021, 10, 3745-3758.	2.9	4
189	Effect of a Dielectric Spacer on Electronic and Electromagnetic Interactions at Play in Molecular Exciton Decay at Surfaces and in Plasmonic Gaps. ACS Photonics, 2021, 8, 3495-3505.	3.2	4
190	Probing the role of grain boundaries in single Cu nanoparticle oxidation by <i>in situ</i> plasmonic scattering. Physical Review Materials, 2022, 6, .	0.9	4
191	Raman-Brillouin electronic density in short-period superlattices. Physical Review B, 2010, 82, .	1.1	3
192	Coupling of nanoparticle plasmons with molecular linkers. Proceedings of SPIE, 2011, , .	0.8	3
193	Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion. Faraday Discussions, 2015, 178, 253-279.	1.6	3
194	Stopping anisotropy in molecular chains. Nuclear Instruments & Methods in Physics Research B, 2000, 164-165, 318-323.	0.6	2
195	Atomistic description of the electronic structure of T-shaped quantum wires. Microelectronics Journal, 2003, 34, 603-606.	1.1	2
196	Coloured heat. Nature Photonics, 2009, 3, 609-610.	15.6	2
197	Spectral Selectivity of Plasmonic Interactions between Individual Up-Converting Nanocrystals and Spherical Gold Nanoparticles. Materials, 2017, 10, 905.	1.3	2
198	San Sebastian, a City of (Nano)Science and Technology. ACS Nano, 2019, 13, 12254-12256.	7.3	2

#	Article	IF	CITATIONS
199	See how atoms dance. National Science Review, 2020, 7, 833-834.	4.6	2
200	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.	3.2	2
201	Using Local Fields to Tailor Hybrid Quantum Dot-Metal Nanoparticle Systems: Connecting the Dots. , 2011, , .		1
202	Quantum effects in tunnelling plasmonics. , 2013, , .		1
203	Ultrafine control of partially loaded single plasmonic nanoantennas fabricated using e-beam lithography and helium ion beam milling. , 2014, , .		1
204	Strong excitonic-plasmonic coupling in hybrid system of metal nanoparticles and J-aggregates of organic dye. , 2015, , .		1
205	Shape-sensitive inelastic scattering from metallic nanoparticles. Advances in Quantum Chemistry, 2022, , .	0.4	1
206	Coherence and Decoherence of a Localized Excitation on a Surface Adatom. Chinese Physics Letters, 2002, 19, 1195-1198.	1.3	0
207	Tunnel-Coupled Quantum Dots: Atomistic Theory of Quantum Dot Molecules and Arrays. Materials Research Society Symposia Proceedings, 2002, 737, 189.	0.1	0
208	THz scattering-type near-field microscopy of semiconductor conductivity and mobility. , 2009, , .		0
209	Acousto-Plasmonic Hot Spots: Driving Enhanced Raman Scattering in Metallic Nanoparticles. , 2010, , .		0
210	Nanoplasmonics in field-enhanced spectroscopy. , 2010, , .		0
211	Plasmonic nanoantennas as building blocks for ultracompact photonic devices. , 2010, , .		0
212	Hybridisation of antenna and cavity modes in nanoparticle-on-mirror plasmonic nanocavities. , 2015, , .		0
213	Plasmonics of Ultranarrow Gaps Shunted by Organic Conductive Junctions. , 2015, , .		0
214	Controlling molecular vibrations in resonant surface-enhanced Raman scattering. , 2017, , .		0
215	Metal oxide metasurfaces for active control and space technology. , 2017, , .		0
216	Plasmonic enhancement of electric field-induced second harmonic generation in tunneling gaps. , 2017, , .		0

#	Article	lF	CITATIONS
217	Molecular optomechanics in atomic-scale plasmonic hot spots. , 2017, , .		Ο
218	EELS in STEM: the "Swiss Army Knife―of Spectroscopy. Microscopy and Microanalysis, 2019, 25, 620-621.	0.2	0
219	Novel Metal Oxide Metasurface-based Optical Solar Reflectors. , 2021, , .		0
220	Tunnelling Induced Fluorescence as a Probe of Electromagnetic Interaction at Nanometre Proximity. , 2003, , 81-91.		0
221	Hybrid Plasmonic Nanodevices for All-optical Control of Information. , 2012, , .		0
222	Quantum effects in subnanometric-gap plasmonic antennas. , 2012, , .		0
223	Strong coupling effects in hybrid plexitonic systems. , 2017, , .		0
224	Argia txiki egiten denean. Ekaia (journal), 2020, , 275-293.	0.0	0
225	Correction to "Second-Harmonic Generation from a Quantum Emitter Coupled to a Metallic Nanoantenna― ACS Photonics, 2022, 9, 1829-1829.	3.2	0