Katherine E Yutzey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3087030/publications.pdf

Version: 2024-02-01

		31949	36008
135	10,173	53	97
papers	citations	h-index	g-index
138	138	138	11964
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H579-H596.	1.5	21
2	Porcine Models of Heart Regeneration. Journal of Cardiovascular Development and Disease, 2022, 9, 93.	0.8	3
3	A clinical scoring system for early onset (neonatal) Marfan syndrome. Genetics in Medicine, 2022, , .	1.1	1
4	Macrophage lineages in heart valve development and disease. Cardiovascular Research, 2021, 117, 663-673.	1.8	28
5	Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. International Journal of Molecular Sciences, 2021, 22, 3288.	1.8	27
6	Periostin-expressing Schwann cells and endoneurial cardiac fibroblasts contribute to sympathetic nerve fasciculation after birth. Journal of Molecular and Cellular Cardiology, 2021, 154, 124-136.	0.9	11
7	Pharmacological Inhibition of Macrophage Infiltration Prevents Myxomatous Valve Degeneration in Marfan Syndrome. FASEB Journal, 2021, 35, .	0.2	O
8	Cardiomyocyte Cell Cycling, Maturation, and Growth by Multinucleation in Postnatal Swine. FASEB Journal, 2021, 35, .	0.2	0
9	Prox1+ Endothelial Cells in Heart Valve Development and Homeostasis. FASEB Journal, 2021, 35, .	0.2	O
10	Epigenetic Regulation of Heart Failure: Cell Type Matters. Circulation Research, 2021, 129, 414-416.	2.0	2
11	Timing of Repair in Tetralogy of Fallot: Effects on Outcomes and Myocardial Health. Cardiology in Review, 2021, 29, 62-67.	0.6	7
12	Cardiomyocyte cell cycling, maturation, and growth by multinucleation in postnatal swine. Journal of Molecular and Cellular Cardiology, 2020, 146, 95-108.	0.9	39
13	A specialized population of Periostin-expressing cardiac fibroblasts contributes to postnatal cardiomyocyte maturation and innervation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21469-21479.	3.3	35
14	Ube2v1 Positively Regulates Protein Aggregation by Modulating Ubiquitin Proteasome System Performance Partially Through K63 Ubiquitination. Circulation Research, 2020, 126, 907-922.	2.0	22
15	Mechanisms of heart valve development and disease. Development (Cambridge), 2020, 147, .	1.2	46
16	Scar Formation with Decreased Cardiac Function Following Ischemia/Reperfusion Injury in $1\mathrm{Month}$ Old Swine. Journal of Cardiovascular Development and Disease, 2020, 7, 1.	0.8	12
17	Cytokinesis, Beta-Blockers, and Congenital Heart Disease. New England Journal of Medicine, 2020, 382, 291-293.	13.9	10
18	Deficiency of Circulating Monocytes Ameliorates the Progression of Myxomatous Valve Degeneration in Marfan Syndrome. Circulation, 2020, 141, 132-146.	1.6	32

#	Article	IF	Citations
19	Developmental Pathways and Aortic Valve Calcification. Contemporary Cardiology, 2020, , 47-71.	0.0	1
20	Assessing Vascularization of the Heart of Young Pigs After Cardiac Injury by Ischemia/ Reperfusion. FASEB Journal, 2020, 34, $1-1$.	0.2	0
21	To EndoMT or Not to EndoMT. Circulation Research, 2020, 126, 985-987.	2.0	4
22	Cardiac Fibroblasts and the Extracellular Matrix in Regenerative and Nonregenerative Hearts. Journal of Cardiovascular Development and Disease, 2019, 6, 29.	0.8	48
23	Postnatal Cardiac Development and Regenerative Potential in Large Mammals. Pediatric Cardiology, 2019, 40, 1345-1358.	0.6	37
24	Calcification and extracellular matrix dysregulation in human postmortem and surgical aortic valves. Heart, 2019, 105, 1616-1621.	1.2	33
25	At the Heart of the Matter: A Tribute to Roger Markwald. Anatomical Record, 2019, 302, 12-13.	0.8	2
26	Maturation of heart valve cell populations during postnatal remodeling. Development (Cambridge), 2019, 146, .	1.2	78
27	Endothelial Cell Lineage Analysis Does Not Provide Evidence for EMT in Adult Valve Homeostasis and Disease. Anatomical Record, 2019, 302, 125-135.	0.8	20
28	Abstract 521: Cardiac Fibroblasts are Activated During Postnatal Extracellular Matrix Remodeling. Circulation Research, 2019, 125, .	2.0	0
29	Abstract 423: Cardiomyocyte Maturation and Multinucleation in Postnatal Swine. Circulation Research, 2019, 125, .	2.0	0
30	Macrophage Transitions in Heart Valve Development and Myxomatous Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 636-644.	1.1	57
31	FOXF1 transcription factor promotes lung morphogenesis by inducing cellular proliferation in fetal lung mesenchyme. Developmental Biology, 2018, 443, 50-63.	0.9	49
32	Notch-Tnf signalling is required for development and homeostasis of arterial valves. European Heart Journal, 2017, 38, ehv520.	1.0	49
33	Cardiomyocyte Proliferation. Circulation Research, 2017, 120, 627-629.	2.0	57
34	Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease. Cardiovascular Research, 2017, 113, 40-51.	1.8	50
35	Developmental Mechanisms of Aortic Valve Malformation and Disease. Annual Review of Physiology, 2017, 79, 21-41.	5.6	62
36	Loss of \hat{l}^2 -catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nature Communications, 2017, 8, 712.	5 . 8	143

#	Article	IF	Citations
37	Hypoxia promotes primitive glycosaminoglycan-rich extracellular matrix composition in developing heart valves. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1143-H1154.	1.5	16
38	Molecular Mechanisms of Heart Valve Development and Disease., 2016,, 145-151.		6
39	Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1398-1405.	1.1	67
40	Epicardium-derived fibroblasts in heart development and disease. Journal of Molecular and Cellular Cardiology, 2016, 91, 23-27.	0.9	29
41	Cardiac Fibrosis. Circulation Research, 2016, 118, 1021-1040.	2.0	1,136
42	Overexpression of Tbx20 in Adult Cardiomyocytes Promotes Proliferation and Improves Cardiac Function After Myocardial Infarction. Circulation, 2016, 133, 1081-1092.	1.6	133
43	COX2 Inhibition Reduces Aortic Valve Calcification In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 938-947.	1.1	49
44	Cardiac fibroblasts: from development to heart failure. Journal of Molecular Medicine, 2015, 93, 823-830.	1.7	102
45	Neuregulin 1 makes heart muscle. Nature, 2015, 520, 445-446.	13.7	20
46	BMPâ€pSmad1/5/8 Pathway Activation in Calcific Aortic Valve Disease. FASEB Journal, 2015, 29, 553.4.	0.2	0
47	Cross Talk between NOTCH Signaling and Biomechanics in Human Aortic Valve Disease Pathogenesis. Journal of Cardiovascular Development and Disease, 2014, 1, 237-256.	0.8	10
48	Genome-wide Twist1 occupancy in endocardial cushion cells, embryonic limb buds, and peripheral nerve sheath tumor cells. BMC Genomics, 2014, 15, 821.	1.2	12
49	Congenital Heart Disease Linked to Maternal Autoimmunity against Cardiac Myosin. Journal of Immunology, 2014, 192, 4074-4082.	0.4	11
50	Switched at birth. Nature, 2014, 509, 572-573.	13.7	7
51	Loss of \hat{l}^2 -Catenin Promotes Chondrogenic Differentiation of Aortic Valve Interstitial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2601-2608.	1.1	47
52	Calcific Aortic Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2387-2393.	1.1	261
53	Conserved Transcriptional Regulatory Mechanisms in Aortic Valve Development and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 737-741.	1.1	77
54	Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. Journal of Molecular and Cellular Cardiology, 2013, 65, 108-119.	0.9	105

#	Article	IF	CITATIONS
55	Tbx20 promotes cardiomyocyte proliferation and persistence of fetal characteristics in adult mouse hearts. Journal of Molecular and Cellular Cardiology, 2013, 62, 203-213.	0.9	74
56	FoxO1 and FoxM1 Transcription Factors Have Antagonistic Functions in Neonatal Cardiomyocyte Cell-Cycle Withdrawal and <i>IGF1</i> <ir> <ir> Gene Regulation Circulation Research 2013 112 267-277</ir></ir>	2.0	85
57	A Twist of Proepicardial Fate. Circulation Research, 2013, 113, 1106-1108.	2.0	1
58	Transcriptional Control of Cell Lineage Development in Epicardium-Derived Cells. Journal of Developmental Biology, 2013, 1, 92-111.	0.9	36
59	Differential activation of valvulogenic, chondrogenic, and osteogenic pathways in mouse models of myxomatous and calcific aortic valve disease. Journal of Molecular and Cellular Cardiology, 2012, 52, 689-700.	0.9	63
60	Placement of an Elastic Biodegradable Cardiac Patch on a Subacute Infarcted Heart Leads to Cellularization With Early Developmental Cardiomyocyte Characteristics. Journal of Cardiac Failure, 2012, 18, 585-595.	0.7	35
61	Gene Expression and Collagen Fiber Micromechanical Interactions of the Semilunar Heart Valve Interstitial Cell. Cellular and Molecular Bioengineering, 2012, 5, 254-265.	1.0	19
62	Transcriptional Control of Cardiogenesis. , 2012, , 35-46.		0
63	<i>FoxO1</i> is required in endothelial but not myocardial cell lineages during cardiovascular development. Developmental Dynamics, 2012, 241, 803-813.	0.8	29
64	Tbx20 regulation of cardiac cell proliferation and lineage specialization during embryonic and fetal development in vivo. Developmental Biology, 2012, 363, 234-246.	0.9	52
65	Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Developmental Biology, 2012, 368, 345-357.	0.9	117
66	Notch pathway regulation of neural crest cell development in vivo. Developmental Dynamics, 2012, 241, 376-389.	0.8	61
67	Requirements for <i>Jag1â€Rbpj</i> mediated <i>Notch</i> signaling during early mouse lens development. Developmental Dynamics, 2012, 241, 493-504.	0.8	28
68	Notch Signaling and the Developing Skeleton. Advances in Experimental Medicine and Biology, 2012, 727, 114-130.	0.8	15
69	Heart Valve Structure and Function in Development and Disease. Annual Review of Physiology, 2011, 73, 29-46.	5.6	384
70	Transcriptional regulation of heart valve development and disease. Cardiovascular Pathology, 2011, 20, 162-167.	0.7	36
71	Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. Journal of Molecular and Cellular Cardiology, 2011, 50, 561-569.	0.9	99
72	Twist1 Directly Regulates Genes That Promote Cell Proliferation and Migration in Developing Heart Valves. PLoS ONE, 2011, 6, e29758.	1.1	38

#	Article	lF	Citations
73	Molecular and developmental mechanisms of congenital heart valve disease. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 526-534.	1.6	55
74	NFATC1 promotes epicardium-derived cell invasion into myocardium. Development (Cambridge), 2011, 138, 1747-1757.	1.2	49
75	FoxO Transcription Factors Promote Cardiomyocyte Survival upon Induction of Oxidative Stress. Journal of Biological Chemistry, 2011, 286, 7468-7478.	1.6	283
76	Precise levels of Tbx20 are necessary for cardiac chamber and valve formation in vivo in mice. FASEB Journal, 2011, 25, 177.7.	0.2	0
77	Transcriptional Regulation of Heart Valve Progenitor Cells. Pediatric Cardiology, 2010, 31, 414-421.	0.6	48
78	T-Box Factors. , 2010, , 651-671.		3
79	DiGeorge Syndrome, Tbx1, and Retinoic Acid Signaling Come Full Circle. Circulation Research, 2010, 106, 630-632.	2.0	26
80	Wnt signaling in heart valve development and osteogenic gene induction. Developmental Biology, 2010, 338, 127-135.	0.9	125
81	Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves. Developmental Biology, 2010, 347, 167-179.	0.9	72
82	Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14420-14425.	3.3	120
83	Heart Valve Development. Circulation Research, 2009, 105, 408-421.	2.0	406
84	FoxO Transcription Factors Promote Autophagy in Cardiomyocytes. Journal of Biological Chemistry, 2009, 284, 28319-28331.	1.6	365
85	VEGF and RANKL Regulation of NFATc1 in Heart Valve Development. Circulation Research, 2009, 105, 565-574.	2.0	64
86	Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Developmental Biology, 2008, 317, 282-295.	0.9	89
87	Notch1 regulates the fate of cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15529-15534.	3.3	177
88	Regulation of Cardiomyocyte Proliferation and Myocardial Growth During Development by FOXO Transcription Factors. Circulation Research, 2008, 102, 686-694.	2.0	185
89	Mouse heart valve structure and function: echocardiographic and morphometric analyses from the fetus through the aged adult. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2480-H2488.	1.5	90
90	Teed Off. Circulation Research, 2008, 102, 1295-1297.	2.0	3

#	Article	IF	Citations
91	Shared gene expression profiles in developing heart valves and osteoblast progenitor cells. Physiological Genomics, 2008, 35, 75-85.	1.0	66
92	Principles of Genetic Murine Models for Cardiac Disease. Circulation, 2007, 115, 792-799.	1.6	68
93	Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. Journal of Cell Science, 2007, 120, 200-200.	1.2	0
94	Heart Development and Tâ€box Transcription Factors: Lessons from Avian Embryos. Advances in Developmental Biology (Amsterdam, Netherlands), 2007, , 69-91.	0.4	3
95	Developmental regulation of the mouse IGF-I exon 1 promoter region by calcineurin activation of NFAT in skeletal muscle. American Journal of Physiology - Cell Physiology, 2007, 292, C1887-C1894.	2.1	31
96	Tbx20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression. Developmental Biology, 2007, 302, 376-388.	0.9	114
97	Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Developmental Biology, 2007, 305, 120-132.	0.9	162
98	TRANSCRIPTION FACTORS AND CONGENITAL HEART DEFECTS. Annual Review of Physiology, 2006, 68, 97-121.	5.6	140
99	BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Developmental Biology, 2006, 292, 290-302.	0.9	91
100	NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Developmental Biology, 2006, 292, 407-417.	0.9	49
101	Hearts and bones: Shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Developmental Biology, 2006, 294, 292-302.	0.9	206
102	Microarray analysis of Tbx5-induced genes expressed in the developing heart. Developmental Dynamics, 2006, 235, 2868-2880.	0.8	29
103	ColVa1 and ColXla1 are required for myocardial morphogenesis and heart valve development. Developmental Dynamics, 2006, 235, 3295-3305.	0.8	58
104	Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. Journal of Cell Science, 2006, 119, 4315-4321.	1.2	55
105	Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. Journal of Cell Science, 2006, 119, 4367-4367.	1.2	0
106	Extracellular Matrix Remodeling and Organization in Developing and Diseased Aortic Valves. Circulation Research, 2006, 98, 1431-1438.	2.0	371
107	Ras-Related Signaling Pathways in Valve Development: Ebb and Flow. Physiology, 2005, 20, 390-397.	1.6	24
108	Congenital heart disease: Genetic causes and developmental insights. Progress in Pediatric Cardiology, 2005, 20, 101-111.	0.2	17

7

#	Article	IF	Citations
109	T-box genes and heart development: Putting the ?T? in heart. Developmental Dynamics, 2005, 232, 11-20.	0.8	148
110	Restoration of DSCR1 to disomy in the trisomy 16 mouse model of Down syndrome does not correct cardiac or craniofacial development anomalies. Developmental Dynamics, 2005, 233, 954-963.	0.8	19
111	Noonan Syndrome Mutation Q79R in Shp2 Increases Proliferation of Valve Primordia Mesenchymal Cells via Extracellular Signal–Regulated Kinase 1/2 Signaling. Circulation Research, 2005, 97, 813-820.	2.0	53
112	Genetic Loss of Calcineurin Blocks Mechanical Overload-induced Skeletal Muscle Fiber Type Switching but Not Hypertrophy. Journal of Biological Chemistry, 2004, 279, 26192-26200.	1.6	160
113	Differential Expression and Function of Tbx5 and Tbx20 in Cardiac Development. Journal of Biological Chemistry, 2004, 279, 19026-19034.	1.6	112
114	Calcineurin signaling in avian cardiovascular development. Developmental Dynamics, 2004, 229, 300-311.	0.8	8
115	Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Developmental Dynamics, 2004, 230, 239-250.	0.8	229
116	MAP kinase activation in avian cardiovascular development. Developmental Dynamics, 2004, 230, 773-780.	0.8	12
117	Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Developmental Biology, 2004, 266, 1-16.	0.9	249
118	DSCR1 gene expression is dependent on NFATc1 during cardiac valve formation and colocalizes with anomalous organ development in trisomy 16 mice. Developmental Biology, 2004, 266, 346-360.	0.9	71
119	TBX5: a developmental key that fits many locks. Journal of Molecular and Cellular Cardiology, 2003, 35, 1175-1177.	0.9	7
120	NFATc3 and NFATc4 Are Required for Cardiac Development and Mitochondrial Function. Circulation Research, 2003, 92, 1305-1313.	2.0	129
121	Nkx-2.5 Gene Induction in Mice Is Mediated by a Smad Consensus Regulatory Region. Developmental Biology, 2002, 244, 243-256.	0.9	87
122	Wherefore heart thou? Embryonic origins of cardiogenic mesoderm. Developmental Dynamics, 2002, 223, 307-320.	0.8	90
123	Novel Cell Lines Promote the Discovery of Genes Involved in Early Heart Development. Developmental Biology, 2001, 235, 507-520.	0.9	34
124	Anterior expression of thecaudal homologuecCdx-B activates a posterior genetic program in avian embryos. Developmental Dynamics, 2001, 221, 412-421.	0.8	29
125	The Molecular Genetic Revolution in Congenital Heart Disease. American Journal of Roentgenology, 2001, 176, 575-581.	1.0	2
126	Ventricular Expression of tbx5 Inhibits Normal Heart Chamber Development. Developmental Biology, 2000, 223, 169-180.	0.9	189

KATHERINE E YUTZEY

#	ARTICLE	lF	CITATIONS
127	Lack of Regulation in the Heart Forming Region of Avian Embryos. Developmental Biology, 1999, 207, 163-175.	0.9	71
128	Analysis ofHox gene expression during early avian heart development. Developmental Dynamics, 1998, 213, 82-91.	0.8	41
129	Thyroid transcription factor-1, hepatocyte nuclear factor-3beta and surfactant protein A and B in the developing chick lung. Journal of Anatomy, 1998, 193, 399-408.	0.9	40
130	The Evil proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mechanisms of Development, 1997, 65, 55-70.	1.7	155
131	Molecular Cloning and Expression of Two Novel Avian Cytochrome P450 1A Enzymes Induced by 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Journal of Biological Chemistry, 1996, 271, 33054-33059.	1.6	118
132	Diversification of Cardiomyogenic Cell Lineages in Vitro. Developmental Biology, 1995, 170, 531-541.	0.9	85
133	Commitment, Differentiation, and Diversification of Avian Cardiac Progenitor Cells. Annals of the New York Academy of Sciences, 1995, 752, 1-8.	1.8	10
134	Diversification of Cardiomyogenic Cell Lineages During Early Heart Development. Circulation Research, 1995, 77, 216-219.	2.0	87
135	Different E-box regulatory sequences are functionally distinct when placed within the context of the troponin I enhancer. Nucleic Acids Research, 1992, 20, 5105-5113.	6.5	44