## Colin H Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3086926/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Beyond traditional wind farm noise characterisation using transfer learning. JASA Express Letters, 2022, 2, 052801.                                                               | 0.5 | 1         |
| 2  | Long-term quantification and characterisation of wind farm noise amplitude modulation.<br>Measurement: Journal of the International Measurement Confederation, 2021, 182, 109678. | 2.5 | 13        |
| 3  | Benchmark characterisation and automated detection of wind farm noise amplitude modulation.<br>Applied Acoustics, 2021, 183, 108286.                                              | 1.7 | 2         |
| 4  | Recent Advances in Wind Turbine Noise Research. Acoustics, 2020, 2, 171-206.                                                                                                      | 0.8 | 35        |
| 5  | Investigation of a microphone height correction for long-range wind farm noise measurements.<br>Applied Acoustics, 2019, 155, 97-110.                                             | 1.7 | 3         |
| 6  | Prevalence of wind farm amplitude modulation at long-range residential locations. Journal of Sound and Vibration, 2019, 455, 136-149.                                             | 2.1 | 20        |
| 7  | Experimental and numerical investigation of blade–tower interaction noise. Journal of Sound and Vibration, 2019, 443, 362-375.                                                    | 2.1 | 15        |
| 8  | A Review of the Potential Impacts of Wind Farm Noise on Sleep. Acoustics Australia, 2018, 46, 87-97.                                                                              | 1.4 | 28        |
| 9  | Wind Farm Noise Uncertainty: Prediction, Measurement and Compliance Assessment. Acoustics<br>Australia, 2018, 46, 59-67.                                                          | 1.4 | 2         |
| 10 | Analytical validation of an explicit finite element model of a rolling element bearing with a localised<br>line spall. Journal of Sound and Vibration, 2018, 416, 94-110.         | 2.1 | 36        |
| 11 | To sleep or not to sleep International Journal of Acoustics and Vibrations, 2017, 22, .                                                                                           | 0.3 | 0         |
| 12 | Characterisation of wind farm infrasound and low-frequency noise. Journal of Sound and Vibration, 2016, 370, 176-190.                                                             | 2.1 | 39        |
| 13 | Infrasound and Low-Frequency Noise from Wind Turbines. Lecture Notes in Mechanical Engineering, 2016, , 3-16.                                                                     | 0.3 | 7         |
| 14 | An extensive review of vibration modelling of rolling element bearings with localised and extended defects. Journal of Sound and Vibration, 2015, 357, 300-330.                   | 2.1 | 108       |
| 15 | Prediction of Acoustic Loads on a Launch Vehicle: Nonunique Source Allocation Method. Journal of<br>Spacecraft and Rockets, 2015, 52, 1478-1485.                                  | 1.3 | 7         |
| 16 | Outdoor to indoor reduction of wind farm noise for rural residences. Building and Environment, 2015, 94, 764-772.                                                                 | 3.0 | 25        |
| 17 | Effectiveness of a passive-active vibration isolation system with actuator constraints. Chinese Journal of Mechanical Engineering (English Edition), 2014, 27, 567-574.           | 1.9 | 1         |
| 18 | Identification of low frequency wind turbine noise using secondary windscreens of various geometries. Noise Control Engineering Journal, 2014, 62, 69-82.                         | 0.2 | 17        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Suppression of the stationary maglev vehicle–bridge coupled resonance using a tuned mass damper.<br>JVC/Journal of Vibration and Control, 2013, 19, 191-203.                                                            | 1.5 | 33        |
| 20 | Prediction of Acoustic Loads on a Launch Vehicle Fairing During Liftoff. Journal of Spacecraft and Rockets, 2013, 50, 159-168.                                                                                          | 1.3 | 12        |
| 21 | A RANS-based Statistical Noise Model for Trailing Edge Noise. , 2012, , .                                                                                                                                               |     | 5         |
| 22 | Two-Dimensional and Three-Dimensional Acoustic Loading on Cylinders Due to a Point source. AIAA<br>Journal, 2011, 49, 2421-2429.                                                                                        | 1.5 | 4         |
| 23 | Application of least mean square algorithm to suppression of maglev track-induced self-excited vibration. Journal of Sound and Vibration, 2011, 330, 5791-5811.                                                         | 2.1 | 24        |
| 24 | Suppression of maglev vehicle–girder self-excited vibration using a virtual tuned mass damper.<br>Journal of Sound and Vibration, 2011, 330, 883-901.                                                                   | 2.1 | 66        |
| 25 | Engineering Noise Control, Fourth Edition. Noise Control Engineering Journal, 2010, 58, 465.                                                                                                                            | 0.2 | 22        |
| 26 | Suppression of Maglev Track-Induced Self-Excited Vibration Using an Adaptive Cancellation Algorithm.<br>Applied Mechanics and Materials, 2010, 44-47, 586-590.                                                          | 0.2 | 2         |
| 27 | Review of Coupled Vibration Problems in EMS Maglev Vehicles. International Journal of Acoustics and Vibrations, 2010, 15, .                                                                                             | 0.3 | 35        |
| 28 | EGO shape optimization of horn-loaded loudspeakers. Optimization and Engineering, 2008, 9, 361-374.                                                                                                                     | 1.3 | 9         |
| 29 | High frequency spatial vibration control for complex structures. Applied Acoustics, 2008, 69, 933-944.                                                                                                                  | 1.7 | 11        |
| 30 | A Kalman filter approach to virtual sensing for active noise control. Mechanical Systems and Signal<br>Processing, 2008, 22, 490-508.                                                                                   | 4.4 | 80        |
| 31 | Nonlinear Dynamics of Magnetic Bearing Systems. Journal of Intelligent Material Systems and Structures, 2008, 19, 1471-1491.                                                                                            | 1.4 | 46        |
| 32 | Actuator Design and Deployment. , 2008, , 1141-1165.                                                                                                                                                                    |     | 0         |
| 33 | Development of a Transducer for Active Vibration Isolation Using Translational and Rotational<br>Power Transmission as a Cost Function. Journal of Intelligent Material Systems and Structures, 2008,<br>19, 1229-1241. | 1.4 | 3         |
| 34 | Estimation of the number of rotor slots and rotor speed in induction motors using current, flux or<br>vibration signature analysis. Australian Journal of Electrical and Electronics Engineering, 2008, 4,<br>259-268.  | 0.7 | 7         |
| 35 | A moving zone of quiet for narrowband noise in a one-dimensional duct using virtual sensing. Journal of the Acoustical Society of America, 2007, 121, 1459-1470.                                                        | 0.5 | 25        |
| 36 | Detection of Broken Rotor Bar Faults and Effects of Loading in Induction Motors during Rundown. ,<br>2007, , .                                                                                                          |     | 14        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | High frequency spatial vibration control using method. Mechanical Systems and Signal Processing, 2007, 21, 1541-1560.                                                                                   | 4.4 | 11        |
| 38 | Optimal truncated model for vibration control design within a specified bandwidth. International<br>Journal of Solids and Structures, 2007, 44, 4673-4689.                                              | 1.3 | 3         |
| 39 | Active Nonlinear Vibration Absorber Design for Flexible Structures. International Journal of Acoustics and Vibrations, 2007, 12, .                                                                      | 0.3 | 3         |
| 40 | Estimation of Static Eccentricity Severity in Induction Motors for On-Line Condition Monitoring.<br>Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2006, , .              | 0.0 | 9         |
| 41 | Stability and dynamics of a controlled van der Pol–Duffing oscillator. Chaos, Solitons and Fractals, 2006, 28, 555-570.                                                                                 | 2.5 | 51        |
| 42 | Non-linear normal modes and their bifurcation of a two DOF system with quadratic and cubic non-linearity. International Journal of Non-Linear Mechanics, 2006, 41, 1028-1038.                           | 1.4 | 14        |
| 43 | Implementation of active noise control in a multi-modal spray dryer exhaust stack. Applied Acoustics, 2006, 67, 28-48.                                                                                  | 1.7 | 3         |
| 44 | The response of a Duffing–van der Pol oscillator under delayed feedback control. Journal of Sound<br>and Vibration, 2006, 291, 644-655.                                                                 | 2.1 | 70        |
| 45 | Dynamics of two delay coupled van der Pol oscillators. Mechanics Research Communications, 2006, 33, 614-627.                                                                                            | 1.0 | 26        |
| 46 | Detection of broken rotor bars in induction motor using starting-current analysis and effects of loading. IET Electric Power Applications, 2006, 153, 848.                                              | 1.4 | 72        |
| 47 | Active vibration isolation experiments using translational and rotational power transmission as a cost function. Journal of the Acoustical Society of America, 2006, 120, 2004-2016.                    | 0.5 | 6         |
| 48 | Investigation of Static Eccentricity Fault Frequencies using Multiple Sensors in Induction Motors and Effects of Loading. Industrial Electronics Society (IECON ), Annual Conference of IEEE, 2006, , . | 0.0 | 9         |
| 49 | The Application of Grey Relation Close Degree Model in the Fault Diagnosis. Lecture Notes in Computer Science, 2006, , 614-619.                                                                         | 1.0 | 1         |
| 50 | On the approximate solution of a piecewise nonlinear oscillator under super-harmonic resonance.<br>Journal of Sound and Vibration, 2005, 283, 467-474.                                                  | 2.1 | 19        |
| 51 | Comparison of models for predicting the transmission loss of plenum chambers. Applied Acoustics, 2005, 66, 810-828.                                                                                     | 1.7 | 13        |
| 52 | Vibro-acoustic noise control treatments for payload bays of launch vehicles: Discrete to fuzzy solutions. Applied Acoustics, 2005, 66, 1235-1261.                                                       | 1.7 | 26        |
| 53 | Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation. Chaos, Solitons and Fractals, 2005, 25, 461-473.                                                             | 2.5 | 11        |
| 54 | Optimal virtual sensing for active noise control in a rigid-walled acoustic duct. Journal of the Acoustical Society of America, 2005, 118, 3086-3093.                                                   | 0.5 | 5         |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Acoustic cluster control of noise radiated from a planar structure. Journal of the Acoustical<br>Society of America, 2005, 117, 3686-3694.                                                     | 0.5 | 11        |
| 56 | Current and future industrial applications of active noise control. Noise Control Engineering<br>Journal, 2005, 53, 181.                                                                       | 0.2 | 16        |
| 57 | A tool for the optimisation of vibro-acosutic systems using a parallel genetic algorithm and a distributed computing network. Noise Control Engineering Journal, 2005, 53, 256.                | 0.2 | 3         |
| 58 | Hopf Bifurcation of a Magnetic Bearing System with Time Delay. Journal of Vibration and Acoustics,<br>Transactions of the ASME, 2005, 127, 362-369.                                            | 1.0 | 23        |
| 59 | Effect of External Excitations on a Nonlinear System with Time Delay. Nonlinear Dynamics, 2005, 41, 385-402.                                                                                   | 2.7 | 14        |
| 60 | Active control analysis of mining vehicle cabin noise using finite element modelling. Journal of Sound and Vibration, 2004, 277, 277-297.                                                      | 2.1 | 25        |
| 61 | Analytical approximation of the primary resonance response of a periodically excited piecewise non-linear–linear oscillator. Journal of Sound and Vibration, 2004, 278, 327-342.               | 2.1 | 10        |
| 62 | Approximate solutions and chaotic motions of a piecewise nonlinear–linear oscillator. Chaos,<br>Solitons and Fractals, 2004, 20, 1121-1133.                                                    | 2.5 | 11        |
| 63 | Applying effort constraints on adaptive feedforward control using the active set method. Journal of Sound and Vibration, 2003, 260, 757-762.                                                   | 2.1 | 11        |
| 64 | Vibration analysis of waffle floors. Computers and Structures, 2003, 81, 15-26.                                                                                                                | 2.4 | 14        |
| 65 | Virtual error sensing for active noise control in a one-dimensional waveguide:  Performance prediction versus measurement (L). Journal of the Acoustical Society of America, 2003, 113, 35-38. | 0.5 | 18        |
| 66 | LOCAL BIFURCATION CONTROL IN A ROTOR-MAGNETIC BEARING SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 951-956.                           | 0.7 | 6         |
| 67 | Active Control of Enclosed Sound Fields Using Three-axis Energy Density Sensors: Rigid Walled Enclosures. International Journal of Acoustics and Vibrations, 2003, 8, .                        | 0.3 | 2         |
| 68 | A waveform synthesis algorithm for active control of transformer noise: implementation. Applied Acoustics, 2002, 63, 467-479.                                                                  | 1.7 | 33        |
| 69 | Active Control of Sound Radiation by Structures Using Near-field Sensing Strategies. International<br>Journal of Acoustics and Vibrations, 2002, 7, .                                          | 0.3 | 1         |
| 70 | Active Control of Sound Radiation from a Small Transformer Using Near-field Sensing. International<br>Journal of Acoustics and Vibrations, 2002, 7, .                                          | 0.3 | 1         |
| 71 | Numerical Evaluation of a Decentralised Feedforward Active Control System for Electrical Transformer Noise. International Journal of Acoustics and Vibrations, 2002, 7, .                      | 0.3 | 0         |
| 72 | AN ALGORITHM FOR ACTIVE CONTROL OF TRANSFORMER NOISE WITH ON-LINE CANCELLATION PATH<br>MODELLING BASED ON THE PERTURBATION METHOD. Journal of Sound and Vibration, 2001, 240, 647-665.         | 2.1 | 29        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | NON-LINEAR OSCILLATIONS OF A ROTOR IN ACTIVE MAGNETIC BEARINGS. Journal of Sound and Vibration, 2001, 240, 599-612.                                                                                 | 2.1 | 91        |
| 74 | Active Structural-Acoustic Control of a Rocket Fairing Using Proof-Mass Actuators. Journal of Spacecraft and Rockets, 2001, 38, 219-225.                                                            | 1.3 | 25        |
| 75 | Active noise control in a free field with virtual sensors. Journal of the Acoustical Society of America, 2001, 109, 232-243.                                                                        | 0.5 | 43        |
| 76 | A study of time-domain FXLMS algorithms with control output constraint. Journal of the Acoustical<br>Society of America, 2001, 109, 2815-2823.                                                      | 0.5 | 41        |
| 77 | Minimizing wind effects on active control systems for attenuating outdoor transformer noise. Noise<br>Control Engineering Journal, 2000, 48, 130.                                                   | 0.2 | 6         |
| 78 | Exhaust stack silencer design using finite element analysis. Noise Control Engineering Journal, 2000,<br>48, 113.                                                                                   | 0.2 | 22        |
| 79 | SECONDARY ACOUSTIC SOURCE TYPES FOR ACTIVE NOISE CONTROL IN FREE FIELD: MONOPOLES OR MULTIPOLES?. Journal of Sound and Vibration, 2000, 232, 1005-1009.                                             | 2.1 | 9         |
| 80 | CALCULATION OF VIBRATORY POWER TRANSMISSION FOR USE IN ACTIVE VIBRATION CONTROL. Journal of Sound and Vibration, 2000, 233, 569-581.                                                                | 2.1 | 23        |
| 81 | ERRORS ARISING FROM THREE-DIMENSIONAL ENERGY DENSITY SENSING IN ONE-DIMENSIONAL SOUND FIELDS. Journal of Sound and Vibration, 2000, 236, 375-400.                                                   | 2.1 | 21        |
| 82 | ERRORS IN THE MEASUREMENT OF ACOUSTIC ENERGY DENSITY IN ONE-DIMENSIONAL SOUND FIELDS.<br>Journal of Sound and Vibration, 2000, 236, 801-831.                                                        | 2.1 | 10        |
| 83 | NON-LINEAR RESPONSE OF A POST-BUCKLED BEAM SUBJECTED TO A HARMONIC AXIAL EXCITATION. Journal of Sound and Vibration, 2000, 237, 303-318.                                                            | 2.1 | 32        |
| 84 | A Modified Filtered-X LMS Algorithm for Active Control of Periodic Noise with On-Line Cancellation<br>Path Modelling. Journal of Low Frequency Noise Vibration and Active Control, 2000, 19, 35-46. | 1.3 | 9         |
| 85 | Feasibility of feedback control of transmitted sound into a launch vehicle fairing using structural sensing and proof mass actuators. , 1999, , .                                                   |     | 2         |
| 86 | Structural radiation mode sensing for active control of sound radiation into enclosed spaces.<br>Journal of the Acoustical Society of America, 1999, 106, 3732-3735.                                | 0.5 | 21        |
| 87 | Near-field sensing strategies for the active control of the sound radiated from a plate. Journal of the<br>Acoustical Society of America, 1999, 106, 3394-3406.                                     | 0.5 | 20        |
| 88 | Feedback control of structurally radiated sound into enclosed spaces using structural sensing.<br>Journal of the Acoustical Society of America, 1999, 106, 2621-2628.                               | 0.5 | 21        |
| 89 | Finite Element Analysis of Active Vibration Isolation Using Vibrational Power as a Cost Function.<br>International Journal of Acoustics and Vibrations, 1999, 4,                                    | 0.3 | 3         |
| 90 | THE TRANSMISSION OF VIBRATION THROUGH A COUPLED PERIODIC STRUCTURE. Journal of Sound and Vibration, 1998, 215, 63-79.                                                                               | 2.1 | 19        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A COMPARISON OF NEAR-FIELD ACOUSTIC ERROR SENSING STRATEGIES FOR THE ACTIVE CONTROL OF HARMONIC FREE FIELD SOUND RADIATION. Journal of Sound and Vibration, 1998, 215, 81-103.                         | 2.1 | 20        |
| 92  | Experimental determination of the total vibratory power transmission in an elastic beam. Journal of the Acoustical Society of America, 1998, 104, 898-906.                                             | 0.5 | 6         |
| 93  | Active vibration control of waves in simple structures with multiple error sensors. Journal of the Acoustical Society of America, 1998, 103, 1673-1676.                                                | 0.5 | 3         |
| 94  | Active control of sound transmission using structural error sensing. Journal of the Acoustical Society of America, 1998, 104, 2878-2889.                                                               | 0.5 | 54        |
| 95  | Power transmission from a vibrating body to a circular cylindrical shell through passive and active isolators. Journal of the Acoustical Society of America, 1997, 101, 1479-1491.                     | 0.5 | 28        |
| 96  | Practical Implementation Issues and Future Directions for Active Noise Control. Building Acoustics, 1997, 4, 153-179.                                                                                  | 1.1 | 0         |
| 97  | AN INVESTIGATION OF THE COUPLING LOSS FACTOR FOR A CYLINDER/PLATE STRUCTURE. Journal of Sound and Vibration, 1997, 199, 629-643.                                                                       | 2.1 | 8         |
| 98  | ACTIVE CONTROL OF VIBRATION TRANSMISSION IN A CYLINDRICAL SHELL. Journal of Sound and Vibration, 1997, 203, 409-434.                                                                                   | 2.1 | 11        |
| 99  | Vorticity characteristics of the vibrational intensity field in an actively controlled thin plate. Journal of the Acoustical Society of America, 1996, 99, 942-953.                                    | 0.5 | 9         |
| 100 | Use of genetic algorithms to optimize vibration actuator placement for active control of harmonic interior noise in a cylinder with floor structure. Noise Control Engineering Journal, 1996, 44, 169. | 0.2 | 29        |
| 101 | <title>Use of genetic algorithms for optimizing vibration actuator placement for minimizing sound transmission into enclosed spaces</title> . , 1996, , .                                              |     | 8         |
| 102 | CALCULATING RESONANCE FREQUENCIES OF PERFORATED PANELS. Journal of Sound and Vibration, 1996, 196, 387-399.                                                                                            | 2.1 | 29        |
| 103 | Control of flexural vibration in stiffened structures using multiple piezoceramic actuators. Applied<br>Acoustics, 1996, 49, 17-48.                                                                    | 1.7 | 25        |
| 104 | Active control of vibratory power transmission along a semi-infinite plate. Journal of Sound and Vibration, 1995, 184, 585-610.                                                                        | 2.1 | 35        |
| 105 | Wave propagation through cylinder/plate junctions. Journal of Sound and Vibration, 1995, 186, 447-461.                                                                                                 | 2.1 | 36        |
| 106 | Control of Flexural Vibration in a Beam Using a Piezoceramic Actuator and an Angle Stiffener. Journal of Intelligent Material Systems and Structures, 1994, 5, 536-549.                                | 1.4 | 7         |
| 107 | Piezoelectric Crystal vs Point Force Excitation of Beams and Plates. Journal of Intelligent Material Systems and Structures, 1994, 5, 363-370.                                                         | 1.4 | 5         |
| 108 | The Design of Systems to Control Actively Periodic Sound Transmission Into Enclosed Spaces, Part I:<br>Analytical Models. Journal of Sound and Vibration, 1994, 170, 433-449.                          | 2.1 | 49        |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The Design of Systems to Control Actively Periodic Sound Transmission Into Enclosed Spaces, Part II:<br>Mechanisms and Trends. Journal of Sound and Vibration, 1994, 170, 451-472.                         | 2.1 | 41        |
| 110 | The effect of transfer function estimation errors on the filtered-x LMS algorithm. IEEE Transactions on Signal Processing, 1994, 42, 950-953.                                                              | 3.2 | 153       |
| 111 | Further Studies of the Dynamic Response of a Simply Supported Beam Excited by a Pair of Out-of-Phase<br>Piezoelectric Actuators. Journal of Intelligent Material Systems and Structures, 1994, 5, 654-664. | 1.4 | 16        |
| 112 | The Effect of Error Sensor Location and Type on the Active Control of Beam Vibration. Journal of Sound and Vibration, 1993, 165, 497-510.                                                                  | 2.1 | 26        |
| 113 | Effect Of End Conditions On The Active Control Of Beam Vibration. Journal of Sound and Vibration, 1993, 168, 429-448.                                                                                      | 2.1 | 21        |
| 114 | Active isolation of a vibration source from a thin beam using a single active mount. Journal of the<br>Acoustical Society of America, 1993, 94, 1425-1434.                                                 | 0.5 | 17        |
| 115 | Active control of power flow from a vibrating rigid body to a flexible panel through two active isolators. Journal of the Acoustical Society of America, 1993, 93, 1947-1953.                              | 0.5 | 19        |
| 116 | A comparison of error sensor strategies for the active control of duct noise. Journal of the<br>Acoustical Society of America, 1993, 94, 841-848.                                                          | 0.5 | 18        |
| 117 | Sound Transmission Loss of Corrugated and Fluted Panels. Noise Control Engineering Journal, 1993, 40, 187.                                                                                                 | 0.2 | 12        |
| 118 | Convergence Characteristics of the Multiple Input, Multiple Output LMS Algorithm. Journal of Intelligent Material Systems and Structures, 1992, 3, 115-133.                                                | 1.4 | 2         |
| 119 | A Study of the Response of a Simply Supported Beam to Excitation by a Piezoelectric Actuator. Journal of Intelligent Material Systems and Structures, 1992, 3, 3-16.                                       | 1.4 | 39        |
| 120 | An experimental study of the active control of multipleâ€wave types in an elastic beam. Journal of the<br>Acoustical Society of America, 1992, 92, 871-876.                                                | 0.5 | 20        |
| 121 | Active control of higherâ€order acoustic modes in ducts. Journal of the Acoustical Society of America, 1992, 92, 244-257.                                                                                  | 0.5 | 19        |
| 122 | Total power flow from a vibrating rigid body to a thin panel through multiple elastic mounts. Journal of the Acoustical Society of America, 1992, 92, 895-907.                                             | 0.5 | 53        |
| 123 | Active control of interior noise in model aircraft fuselages using piezoceramic actuators. AIAA<br>Journal, 1992, 30, 2613-2617.                                                                           | 1.5 | 71        |
| 124 | Active control of farâ€field sound radiated by a rectangular panel—A general analysis. Journal of the<br>Acoustical Society of America, 1992, 91, 2056-2066.                                               | 0.5 | 57        |
| 125 | Design considerations for active noise control systems implementing the multiple input, multiple output lms algorithm. Journal of Sound and Vibration, 1992, 159, 157-174.                                 | 2.1 | 27        |
| 126 | Use of a perforated panel for the active control of sound radiated from vibrating structures, I:<br>Low-frequency analysis. Journal of Sound and Vibration, 1992, 156, 349-359.                            | 2.1 | 8         |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Active control of noise transmission through a panel into a cavity. Ill: Effect of the actuator location.<br>Journal of the Acoustical Society of America, 1991, 90, 1493-1501.                         | 0.5 | 29        |
| 128 | Using multiple regression to optimize active noise control system design. Journal of Sound and Vibration, 1991, 148, 537-542.                                                                           | 2.1 | 25        |
| 129 | Experiments on active control of sound radiation from a panel using a piezoceramic actuator. Journal of Sound and Vibration, 1991, 150, 179-190.                                                        | 2.1 | 62        |
| 130 | Mechanisms of active noise control by vibration sources. Journal of Sound and Vibration, 1991, 147, 519-525.                                                                                            | 2.1 | 46        |
| 131 | Sound attenuation in rectangular and circular cross-section ducts with flow and bulk-reacting liner. Journal of Sound and Vibration, 1991, 146, 47-80.                                                  | 2.1 | 25        |
| 132 | Active control of sound radiation from a vibrating rectangular panel by sound sources and vibration inputs: An experimental comparison. Journal of Sound and Vibration, 1991, 145, 195-215.             | 2.1 | 102       |
| 133 | Active control of noise transmission through a panel into a cavity. II: Experimental study. Journal of the Acoustical Society of America, 1991, 90, 1488-1492.                                          | 0.5 | 62        |
| 134 | Active control of total vibratory power flow in a beam. I: Physical system analysis. Journal of the<br>Acoustical Society of America, 1991, 89, 200-209.                                                | 0.5 | 35        |
| 135 | The influence of transducer transfer functions and acoustic time delays on the implementation of the LMS algorithm in active noise control systems. Journal of Sound and Vibration, 1990, 141, 409-424. | 2.1 | 56        |
| 136 | Active control of noise transmission through a panel into a cavity: I. Analytical study. Journal of the<br>Acoustical Society of America, 1990, 87, 2098-2108.                                          | 0.5 | 134       |
| 137 | An alternative mathematical description of the relationship between noise exposure and hearing loss.<br>Journal of the Acoustical Society of America, 1990, 88, 2743-2754.                              | 0.5 | 11        |
| 138 | Active noise control in ducts: Some physical insights. Journal of the Acoustical Society of America, 1989, 86, 184-194.                                                                                 | 0.5 | 40        |
| 139 | Response of a cylindrical machine casing to oscillatory bearing forces. Journal of Sound and Vibration, 1982, 80, 179-192.                                                                              | 2.1 | 2         |
| 140 | Flow resistance information for acoustical design. Applied Acoustics, 1980, 13, 357-391.                                                                                                                | 1.7 | 201       |
| 141 | Near field measurement of the complex radiation impedance presented to a vibrating plate in a reverberant room containing a rotating diffuser. Journal of Sound and Vibration, 1980, 73, 79-101.        | 2.1 | 2         |
| 142 | Measurements of the radiation impedance presented to a source in a reverberant room containing a rotating diffuser. Journal of the Acoustical Society of America, 1979, 65, 708-718.                    | 0.5 | 3         |
| 143 | Near field determination of the complex radiation efficiency and acoustic intensity distribution for a resonality vibrating surface. Journal of Sound and Vibration, 1979, 62, 93-110.                  | 2.1 | 12        |
| 144 | Optical holography for the study of sound radiation from vibrating surfaces. Journal of the<br>Acoustical Society of America, 1976, 60, 543-555.                                                        | 0.5 | 20        |

| #   | Article                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Impedanceâ€ŧube calibration of a reverberant room for the measurement of sound power in tones.<br>Journal of the Acoustical Society of America, 1976, 59, 1393-1398. | 0.5 | 4         |
| 146 | Nonlinear control of a parametrically excited system subject to actuator saturation. , 0, , .                                                                        |     | 1         |
| 147 | Vibration Transducer Principles and Types of Vibration Transducers. , 0, , 444-454.                                                                                  |     | 2         |
| 148 | Sound Absorption in Rooms. , 0, , 1247-1256.                                                                                                                         |     | 1         |
| 149 | Sound Absorption in Enclosures. , 0, , 1115-1128.                                                                                                                    |     | 3         |
| 150 | Engineering Noise Control. , 0, , .                                                                                                                                  |     | 81        |
| 151 | Room Acoustics. , 0, , 1240-1246.                                                                                                                                    |     | 1         |